DeLTra: Deep Light Transport for Projector-Camera Systems

In projector-camera systems, light transport models the propagation from projector emitted radiance to camera-captured irradiance. In this paper, we propose the first end-to-end trainable solution named Deep Light Transport (DeLTra) that estimates radiometrically uncalibrated projector-camera light transport. DeLTra is designed to have two modules: DepthToAtrribute and ShadingNet. DepthToAtrribute explicitly learns rays, depth and normal, and then estimates rough Phong illuminations. Afterwards, the CNN-based ShadingNet renders photorealistic camera-captured image using estimated shading attributes and rough Phong illuminations. A particular challenge addressed by DeLTra is occlusion, for which we exploit epipolar constraint and propose a novel differentiable direct light mask. Thus, it can be learned end-to-end along with the other DeLTra modules. Once trained, DeLTra can be applied simultaneously to three projector-camera tasks: image-based relighting, projector compensation and depth/normal reconstruction. In our experiments, DeLTra shows clear advantages over previous arts with promising quality and meanwhile being practically convenient.

[1]  Andrew Gardner,et al.  Performance relighting and reflectance transformation with time-multiplexed illumination , 2005, ACM Trans. Graph..

[2]  Takahiro Okabe,et al.  Image-Based Relighting with 5-D Incident Light Fields , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[3]  Stefan Roth,et al.  UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss , 2017, AAAI.

[4]  Bingyao Huang,et al.  End-To-End Projector Photometric Compensation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Yi Yang,et al.  Occlusion Aware Unsupervised Learning of Optical Flow , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[6]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[7]  Sébastien Roy,et al.  Multi-projectors for arbitrary surfaces without explicit calibration nor reconstruction , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[8]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[9]  Masatoshi Ishikawa,et al.  Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker , 2017, IEEE Transactions on Visualization and Computer Graphics.

[10]  Adrien Bousseau,et al.  Single-image SVBRDF capture with a rendering-aware deep network , 2018, ACM Trans. Graph..

[11]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[12]  Koichi Hashimoto,et al.  Ultra-Fast Multi-Scale Shape Estimation of Light Transport Matrix for Complex Light Reflection Objects , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Tian-Tsong Ng,et al.  From the Rendering Equation to Stratified Light Transport Inversion , 2011, International Journal of Computer Vision.

[14]  Tony Q. S. Quek,et al.  Radiometric compensation using stratified inverses , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[16]  Tian-Tsong Ng,et al.  On the Duality of Forward and Inverse Light Transport , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Anselm Grundhöfer,et al.  Recent Advances in Projection Mapping Algorithms, Hardware and Applications , 2018, Comput. Graph. Forum.

[18]  Athinodoros S. Georghiades,et al.  Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Shree K. Nayar,et al.  Modeling the space of camera response functions , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[21]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[22]  Stefan Roth,et al.  MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[23]  Takanori Maehara,et al.  Neural Inverse Rendering for General Reflectance Photometric Stereo , 2018, ICML.

[24]  Matthew O'Toole,et al.  3D Shape and Indirect Appearance by Structured Light Transport , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Renjie Liao,et al.  GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Takahiro Okabe,et al.  Fast Spectral Reflectance Recovery Using DLP Projector , 2010, International Journal of Computer Vision.

[27]  Jason Geng,et al.  Structured-light 3D surface imaging: a tutorial , 2011 .

[28]  Peiran REN,et al.  Image based relighting using neural networks , 2015, ACM Trans. Graph..

[29]  Paul A. Beardsley,et al.  Natural video matting using camera arrays , 2006, ACM Trans. Graph..

[30]  Gustavo Carneiro,et al.  Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue , 2016, ECCV.

[31]  Chunyu Li,et al.  Pro-Cam SSfM: projector–camera system for structure and spectral reflectance from motion , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  David A. Clausi,et al.  Saliency-guided projection geometric correction using a projector-camera system , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[33]  Kiriakos N. Kutulakos,et al.  A theory of inverse light transport , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[34]  Daniel G. Aliaga,et al.  Fast high-resolution appearance editing using superimposed projections , 2012, TOGS.

[35]  Kalyan Sunkavalli,et al.  Learning to reconstruct shape and spatially-varying reflectance from a single image , 2018, ACM Trans. Graph..

[36]  Zhouchen Lin,et al.  Kernel Nyström method for light transport , 2009, ACM Trans. Graph..

[37]  Noah Snavely,et al.  Unsupervised Learning of Depth and Ego-Motion from Video , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Timo Ropinski,et al.  Deep‐learning the Latent Space of Light Transport , 2018, Comput. Graph. Forum.

[39]  T. Yoshida,et al.  A Virtual Color Reconstruction System for Real Heritage with Light Projection , 2003 .

[40]  Greg Welch,et al.  Shader Lamps: Animating Real Objects With Image-Based Illumination , 2001, Rendering Techniques.

[41]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[42]  Yasuyuki Matsushita,et al.  Deep Photometric Stereo Network , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[43]  Gordon Wetzstein,et al.  The Visual Computing of Projector‐Camera Systems , 2008, SIGGRAPH '08.

[44]  Katsushi Ikeuchi,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Bi-polynomial Modeling of Low-frequency Reflectances , 2022 .

[45]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[46]  Pieter Peers,et al.  Relighting with 4D incident light fields , 2003, ACM Trans. Graph..

[47]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[48]  Paul E. Debevec,et al.  The relightables , 2019, ACM Trans. Graph..

[49]  Yaser Sheikh,et al.  Texture Illumination Separation for Single-Shot Structured Light Reconstruction , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Matthew O'Toole,et al.  Optical computing for fast light transport analysis , 2010, ACM Trans. Graph..

[51]  Shree K. Nayar,et al.  A Projection System with Radiometric Compensation for Screen Imperfections , 2003 .

[52]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[53]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[54]  Hans-Peter Seidel,et al.  Deep Shading: Convolutional Neural Networks for Screen Space Shading , 2016, Comput. Graph. Forum.

[55]  Yasuyuki Matsushita,et al.  Self-Calibrating Deep Photometric Stereo Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Jaakko Lehtinen,et al.  Differentiable Monte Carlo ray tracing through edge sampling , 2018, ACM Trans. Graph..

[57]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[58]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[59]  Ye Yu,et al.  InverseRenderNet: Learning Single Image Inverse Rendering , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Oisin Mac Aodha,et al.  Unsupervised Monocular Depth Estimation with Left-Right Consistency , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[62]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[63]  Paul A. Beardsley,et al.  A self-correcting projector , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[64]  Steve Marschner,et al.  Dual photography , 2005, ACM Trans. Graph..

[65]  Dmytro Mishkin,et al.  Kornia: an Open Source Differentiable Computer Vision Library for PyTorch , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[66]  Bingyao Huang,et al.  CompenNet++: End-to-End Full Projector Compensation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[67]  Bingyao Huang,et al.  A Single-Shot-Per-Pose Camera-Projector Calibration System for Imperfect Planar Targets , 2018, 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).

[68]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Pieter Peers,et al.  Compressive light transport sensing , 2009, ACM Trans. Graph..

[70]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[71]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[72]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[73]  Mark Ashdown,et al.  Robust Content-Dependent Photometric Projector Compensation , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[74]  David Salesin,et al.  Environment matting and compositing , 1999, SIGGRAPH.

[75]  Justus Thies,et al.  Real-time pixel luminance optimization for dynamic multi-projection mapping , 2015, ACM Trans. Graph..

[76]  Xiao Li,et al.  Modeling surface appearance from a single photograph using self-augmented convolutional neural networks , 2017, ACM Trans. Graph..

[77]  Tian-Tsong Ng,et al.  A Dual Theory of Inverse and Forward Light Transport , 2010, ECCV.

[78]  Gabriel Taubin,et al.  Simple, Accurate, and Robust Projector-Camera Calibration , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[79]  Masatoshi Ishikawa,et al.  Robust high-speed tracking against illumination changes for dynamic projection mapping , 2015, 2015 IEEE Virtual Reality (VR).

[80]  Zhe Wu,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Anselm Grundhöfer,et al.  Robust, Error-Tolerant Photometric Projector Compensation , 2015, IEEE Transactions on Image Processing.

[82]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).