Flag enumerations of matroid base polytopes

In this paper, we study flag structures of matroid base polytopes. We describe faces of matroid base polytopes in terms of matroid data, and give conditions for hyperplane splits of matroid base polytopes. Also, we show how the cd -index of a polytope can be expressed when a polytope is cut by a hyperplane, and apply these to the cd -index of a matroid base polytope of a rank 2 matroid. Resume. Dans cet article, nous etudions les structures de drapeau de polytopes de base de matroide. Nous decrivons des faces de polytopes de base de matroide en terme des donnees de matroide, et donner des conditions pour les divisions de hyperplane de polytopes de base de matroide. Aussi, nous montrons comment le cd -index d'un polytope peut etre exprime' quand un polytope est coupe par un hyperplane, et s'appliquer ceux-ci au cd -index d'un polytope de base de matroide d'un rang 2 matroide.

[1]  Richard Ehrenborg,et al.  Thec-2d-Index of Oriented Matroids , 1997, J. Comb. Theory, Ser. A.

[2]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[3]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[4]  Richard Ehrenborg,et al.  The cd-Index of Zonotopes and Arrangements , 1998 .

[5]  A. Postnikov,et al.  Faces of Generalized Permutohedra , 2006, math/0609184.

[6]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[7]  Victor Reiner,et al.  A quasisymmetric function for matroids , 2009, Eur. J. Comb..

[8]  Caroline J. Klivans,et al.  The Bergman complex of a matroid and phylogenetic trees , 2006, J. Comb. Theory, Ser. B.

[9]  B. Sturmfels,et al.  Matroid polytopes, nested sets and Bergman fans , 2004, math/0411260.

[10]  I. Gelfand,et al.  Combinatorial Geometries, Convex Polyhedra, and Schubert Cells , 1987 .

[11]  M. Purtill André permutations, lexicographic shellability and the cd-index of a convex polytope , 1993 .

[12]  Victor Reiner,et al.  Cyclotomic and simplicial matroids , 2004 .

[13]  James G. Oxley,et al.  Matroid theory , 1992 .

[14]  Richard Ehrenborg,et al.  Coproducts and the cd-Index , 1998 .

[15]  Bernt Lindström,et al.  On the realization of convex polytopes, Euler's formula and Möbius functions , 1971 .

[16]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[17]  Sven Herrmann,et al.  Splitting Polytopes , 2008, 0805.0774.