Big Semantic Data Processing in the Materials Design Domain

To speed up the progress in the field of materials design, a number of challenges related to big data need to be addressed. This entry discusses these challenges and shows the semantic technologies ...

[1]  Tim Austin,et al.  Towards a digital infrastructure for engineering materials data , 2016 .

[2]  Changjun Hu,et al.  A Semantic-Driven Knowledge Representation Model for the Materials Engineering Application , 2014, Data Sci. J..

[3]  Jack C. Wileden,et al.  A semantic knowledge management system for laminated composites , 2014, Adv. Eng. Informatics.

[4]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[5]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Taylor D. Sparks,et al.  Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties , 2016 .

[7]  Peter Murray-Rust,et al.  The semantics of Chemical Markup Language (CML): dictionaries and conventions , 2011, J. Cheminformatics.

[8]  Manoj Bhat,et al.  PREMΛP: Knowledge Driven Design of Materials and Engineering Process , 2013 .

[9]  Leslie Glasser Crystallographic Information Resources , 2016 .

[10]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[11]  Gerbrand Ceder,et al.  World changing ideas. 10 ways science may jazz up our gadgets, help to solve our most intractable problems and save lives. , 2013, Scientific American.

[12]  Henry S. Rzepa,et al.  CML: Evolution and design , 2011, J. Cheminformatics.

[13]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[14]  Toshihiro Ashino,et al.  Materials Ontology: An Infrastructure for Exchanging Materials Information and Knowledge , 2010, Data Sci. J..

[15]  Norman Swindells,et al.  The Representation and Exchange of Material and Other Engineering Properties , 2009, Data Sci. J..

[16]  Valentina Ivanova,et al.  A unified approach for debugging is-a structure and mappings in networked taxonomies , 2013, J. Biomed. Semant..

[17]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[18]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[19]  Ursula R. Kattner,et al.  File and data repositories for Next Generation CALPHAD , 2014 .

[20]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[21]  Chongchong Zhao,et al.  MATVIZ: a semantic query and visualization approach for metallic materials data , 2017, Int. J. Web Inf. Syst..

[22]  Xiaoming Zhang,et al.  Semantic Query on Materials Data Based on Mapping MatML to an OWL Ontology , 2009, Data Sci. J..

[23]  Martin Hepp,et al.  BauDataWeb: the Austrian building and construction materials market as linked data , 2013, I-SEMANTICS '13.

[24]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[25]  Patrick Lambrix,et al.  Information Integration in Bioinformatics with Ontologies and Standards , 2009, REWERSE.

[26]  Nicola Guarino,et al.  Sweetening Ontologies with DOLCE , 2002, EKAW.

[27]  Yong Zhao,et al.  An ontology-based knowledge framework for engineering material selection , 2015, Adv. Eng. Informatics.

[28]  Xiaoming Zhang,et al.  A survey on knowledge representation in materials science and engineering: An ontological perspective , 2015, Comput. Ind..

[29]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[30]  Ross D King,et al.  An ontology of scientific experiments , 2006, Journal of The Royal Society Interface.

[31]  Saulius Gražulis,et al.  Specification of the Crystallographic Information File format, version 2.0 , 2016 .

[32]  Krzysztof Janowicz,et al.  An Ontology Design Pattern and its use case for modeling material transformation , 2017, Semantic Web.

[33]  Martin Hepp,et al.  GoodRelations: An Ontology for Describing Products and Services Offers on the Web , 2008, EKAW.

[34]  S. Stein,et al.  XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML) (IUPAC Recommendations 2006) , 2006 .

[35]  Xiaoming Zhang,et al.  MMOY: Towards deriving a metallic materials ontology from Yago , 2016, Adv. Eng. Informatics.

[36]  Vladimir Diky,et al.  Extension of ThermoML: The IUPAC standard for thermodynamic data communications (IUPAC Recommendations 2011) , 2011 .

[37]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[38]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[39]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[40]  Sean Paradiso,et al.  Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification , 2016 .