Agent-based models of economic interactions

The interdisciplinary field of econophysics has enjoyed recently a surge of activities especially with numerous agent-based models, which have led to a substantial development of this field. We review three main application areas of agent-based models in econophysics: order books, distributions of wealth in conservative economies, and minority games.

[1]  M. Marsili,et al.  From Minority Games to real markets , 2000, cond-mat/0011042.

[2]  Yicheng Zhang,et al.  On the minority game: Analytical and numerical studies , 1998, cond-mat/9805084.

[3]  B. Hayes,et al.  Follow the Money , 2002, American Scientist.

[4]  D. Sornette Multiplicative processes and power laws , 1997, cond-mat/9708231.

[5]  K. Kaski,et al.  Adaptation using hybridized genetic crossover strategies , 2002, cond-mat/0210500.

[6]  Matteo Marsili,et al.  Replica symmetry breaking in the minority game , 2000 .

[7]  S. Solomon,et al.  Spontaneous Scaling Emergence In Generic Stochastic Systems , 1996 .

[8]  Giuseppe Toscani,et al.  Hydrodynamics from Kinetic Models of Conservative Economies , 2007 .

[9]  F. Slanina Critical comparison of several order-book models for stock-market fluctuations , 2008, 0801.0631.

[10]  S. Redner,et al.  Wealth distributions in asset exchange models , 1998, 1006.4595.

[11]  M. Levy,et al.  POWER LAWS ARE LOGARITHMIC BOLTZMANN LAWS , 1996, adap-org/9607001.

[12]  M. Mézard,et al.  Statistical Properties of Stock Order Books: Empirical Results and Models , 2002 .

[13]  M. Marchesi,et al.  VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 2000 .

[14]  Bikas K. Chakrabarti,et al.  Kinetic exchange models for income and wealth distributions , 2007, 0709.1543.

[15]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[16]  Z. Burda,et al.  Is Econophysics a Solid Science , 2003, cond-mat/0301096.

[17]  Damien Challet,et al.  Analyzing and modeling 1+1d markets , 2001 .

[18]  S. Solomon,et al.  Dynamical Explanation For The Emergence Of Power Law In A Stock Market Model , 1996 .

[19]  A. Chakraborti,et al.  Basic kinetic wealth-exchange models: common features and open problems , 2006, physics/0611245.

[20]  Matteo Marsili,et al.  Market mechanism and expectations in minority and majority games , 2001 .

[21]  Thomas Lux,et al.  Emergent Statistical Wealth Distributions in Simple Monetary Exchange Models: A Critical Review , 2005, ArXiv.

[22]  R. Riolo,et al.  Evolution in minority games. (I). Games with a fixed strategy space , 1999, adap-org/9903008.

[23]  Yi-Cheng Zhang,et al.  Emergence of cooperation and organization in an evolutionary game , 1997 .

[24]  Bikas K. Chakrabarti,et al.  Money in Gas-Like Markets: Gibbs and Pareto Laws , 2003 .

[25]  Ton Coolen,et al.  The mathematical theory of minority games , 2005 .

[26]  Bikas K. Chakrabarti,et al.  Pareto Law in a Kinetic Model of Market with Random Saving Propensity , 2004 .

[27]  F Slanina Mean-field approximation for a limit order driven market model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  E. Phelps,et al.  Individual Forecasting and Aggregate Outcomes: 'Rational Expectations' Examined , 1987 .

[29]  V. Yakovenko,et al.  Colloquium: Statistical mechanics of money, wealth, and income , 2009, 0905.1518.

[30]  Matteo Marsili,et al.  Modeling market mechanism with minority game , 1999, cond-mat/9909265.

[31]  A. Chakraborti,et al.  Gamma-distribution and wealth inequality , 2008, 0802.4410.

[32]  Gibbs versus non-Gibbs distributions in money dynamics , 2003, cond-mat/0312167.

[33]  Andrea Cavagna,et al.  THERMAL MODEL FOR ADAPTIVE COMPETITION IN A MARKET , 1999 .

[34]  Victor M. Yakovenko,et al.  Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States , 2001, cond-mat/0103544.

[35]  Guillermo Abramson,et al.  Wealth redistribution in our small world , 2003 .

[36]  J. Bouchaud,et al.  Herd Behavior and Aggregate Fluctuations in Financial Markets , 1997 .

[37]  Yi-Cheng Zhang,et al.  Minority Games , 2008, Encyclopedia of Complexity and Systems Science.

[38]  Carl Chiarella,et al.  A simulation analysis of the microstructure of double auction markets , 2002 .

[39]  Bikas K. Chakrabarti,et al.  Econophysics of Wealth Distributions , 2005 .

[40]  Arnab Chatterjee,et al.  Master equation for a kinetic model of a trading market and its analytic solution. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Herbert Dawid,et al.  EURACE: A massively parallel agent-based model of the European economy , 2008, Appl. Math. Comput..

[42]  M Marsili,et al.  Phase transition and symmetry breaking in the minority game. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Kimmo Kaski,et al.  Statistical model with a standard Gamma distribution. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  X. Sala-i-Martin,et al.  Poverty, inequality and the distribution of income in the G20 , 2002 .

[45]  L. Gillemot,et al.  Statistical theory of the continuous double auction , 2002, cond-mat/0210475.

[46]  Marko Sysi-Aho,et al.  Searching for good strategies in adaptive minority games. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Matteo Marsili,et al.  Minority Games and stylized facts , 2001 .

[48]  X. Sala-i-Martin,et al.  The World Distribution of Income (Estimated from Individual Country Distributions) , 2002 .

[49]  Arnab Das,et al.  An analytic treatment of the Gibbs–Pareto behavior in wealth distribution , 2005 .

[50]  Dynamics of Money and Income Distributions , 2004, cond-mat/0407770.

[51]  B. LeBaron Agent-based Computational Finance , 2006 .

[52]  Neil F. Johnson,et al.  Crowd effects and volatility in markets with competing agents , 1999 .

[53]  B. Mandelbrot THE PARETO-LEVY LAW AND THE DISTRIBUTION OF INCOME* , 1960 .

[54]  Marcel Ausloos,et al.  Model of wealth and goods dynamics in a closed market , 2007 .

[55]  Tobias Preis,et al.  Statistical analysis of financial returns for a multiagent order book model of asset trading. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  U. Michigan,et al.  Evolution in minority games. (II). Games with variable strategy spaces , 1999, adap-org/9906001.

[57]  K. Kaski,et al.  Biology Helps You to Win a Game , 2003, cond-mat/0303221.

[58]  Chester Spatt,et al.  An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse , 1995 .

[59]  M. Marchesi,et al.  Agent-based simulation of a financial market , 2001, cond-mat/0103600.

[60]  Juan C. Ferrero,et al.  The statistical distribution of money and the rate of money transference , 2004 .

[61]  Herbert Dawid,et al.  Production and Finance in EURACE , 2008 .

[62]  Bikas K. Chakrabarti,et al.  Statistical mechanics of money: how saving propensity affects its distribution , 2000, cond-mat/0004256.

[63]  E. Scalas,et al.  Statistical equilibrium in simple exchange games II. The redistribution game , 2007 .

[64]  F. Slanina Inelastically scattering particles and wealth distribution in an open economy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Szabolcs Mike,et al.  An Empirical Behavioral Model of Liquidity and Volatility , 2007, 0709.0159.

[66]  P. M. Hui,et al.  Crowd-anticrowd theory of multi-agent market games , 2001 .

[67]  Generic features of the wealth distribution in ideal-gas-like markets. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Temporal evolution of the "thermal" and "superthermal" income classes in the USA during 1983-2001 , 2005, cond-mat/0406385.

[69]  Bruce J. West,et al.  An out-of-equilibrium model of the distributions of wealth , 2004, cond-mat/0403045.

[70]  Giuseppe Toscani,et al.  On Steady Distributions of Kinetic Models of Conservative Economies , 2008 .

[71]  George J. Stigler,et al.  Public Regulation of the Securities Markets , 1964 .

[72]  B. Bollobás The evolution of random graphs , 1984 .

[73]  Victor M. Yakovenko,et al.  Statistical mechanics of money , 2000 .

[74]  Anirban Chakraborti,et al.  DISTRIBUTIONS OF MONEY IN MODEL MARKETS OF ECONOMY , 2002 .

[75]  Yoshi Fujiwara,et al.  Growth and fluctuations of personal and company's income , 2003 .

[76]  Zecchina,et al.  Statistical mechanics of systems with heterogeneous agents: minority games , 1999, Physical review letters.

[77]  J. Bouchaud Economics needs a scientific revolution , 2008, Nature.

[78]  S. S. Manna,et al.  Detailed simulation results for some wealth distribution models in Econophysics , 2005, physics/0504161.

[79]  N. Johnson,et al.  Financial market complexity , 2003 .

[80]  M. Paczuski,et al.  Price Variations in a Stock Market with Many Agents , 1997 .

[81]  J. Angle The Inequality Process as a wealth maximizing process , 2005 .

[82]  Money exchange model and a general outlook , 2005, physics/0505115.

[83]  Guillermo Abramson,et al.  Correlation between Risk Aversion and Wealth distribution , 2003 .

[84]  K. Kaski,et al.  Intelligent minority game with genetic crossover strategies , 2002, cond-mat/0209525.

[85]  Yoshi Fujiwara,et al.  Growth and fluctuations of personal income , 2002 .

[86]  Rick L. Riolo,et al.  Adaptive Competition, Market Efficiency, and Phase Transitions , 1999 .

[87]  Jerry R. Green,et al.  Individual forecasting and aggregate outcomes: On mistaken beliefs and resultant equilibria , 1984 .

[88]  Giuseppe Toscani,et al.  Kinetic equations modelling wealth redistribution: a comparison of approaches. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Lorenzo Pareschi,et al.  On a Kinetic Model for a Simple Market Economy , 2004, math/0412429.

[90]  N. Johnson,et al.  Self-Organized Segregation within an Evolving Population , 1998, cond-mat/9810142.

[91]  M. Mézard,et al.  Wealth condensation in a simple model of economy , 2000, cond-mat/0002374.

[92]  J. Angle The Surplus Theory of Social Stratification and the Size Distribution of Personal Wealth , 1986 .

[93]  P. Anderson More is different. , 1972, Science.

[94]  W. Arthur Inductive Reasoning and Bounded Rationality , 1994 .

[95]  V. Yakovenko,et al.  Evidence for the exponential distribution of income in the USA , 2001 .

[96]  S. Maslov Simple model of a limit order-driven market , 1999, cond-mat/9910502.

[97]  E. Scalas,et al.  Statistical equilibrium in simple exchange games I , 2006, physics/0608215.

[98]  J. Angle Deriving the size distribution of personal wealth from “the rich get richer, the poor get poorer” , 1993 .

[99]  J. Angle,et al.  The Statistical Signature of Pervasive Competition on Wage and Salary Incomes , 2002 .

[100]  E. Scalas,et al.  Statistical equilibrium in simple exchange games I , 2006 .