Software for control systems analysis and design, singular value decomposition

The singular value decomposition (SVD) goes back to the beginning of this century. In a paper of Beltrami [3] it was shown for the first time that any n x n matrix A can be diagonalized via orthogonal row and column transformations. ...

[1]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[2]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  A. Tits,et al.  Characterization and efficient computation of the structured singular value , 1986 .

[5]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[6]  A. Laub,et al.  Computing the singular value decompostion of a product of two matrices , 1986 .

[7]  A. Antoulas New results on the algebraic theory of linear systems: the solution of the cover problems , 1983 .

[8]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[9]  C. Paige Properties of numerical algorithms related to computing controllability , 1981 .

[10]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[11]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[12]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[13]  J. Doyle,et al.  Practical computation of the mixed μ problem , 1992, 1992 American Control Conference.

[14]  D. Boley,et al.  Computing rank-deficiency of rectangular matrix pencils , 1986, 1986 25th IEEE Conference on Decision and Control.

[15]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[16]  H. Zeiger,et al.  Approximate linear realizations of given dimension via Ho's algorithm , 1974 .

[17]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[18]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[19]  Paul Van Dooren,et al.  On the quadratic convergence of Kogbetliantz's algorithm for computing the singular value decomposition , 1986 .

[20]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[21]  M. Gevers,et al.  Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects , 1993 .

[22]  T. Başar Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .

[23]  A level-set idea to compute the real Hurwitz-stability radius , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[24]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[25]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .

[27]  T. Chan Rank revealing QR factorizations , 1987 .

[28]  H. Ozbay,et al.  On the /spl Nscr//spl Pscr/-hardness of the purely complex /spl mu/ computation, analysis/synthesis, and some related problems in multidimensional systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[29]  E. G. Kogbetliantz Solution of linear equations by diagonalization of coefficients matrix , 1955 .

[30]  Paul Van Dooren,et al.  On Kogbetliantz's SVD Algorithm in the Presence of Clusters , 1987 .

[31]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[32]  J. Rice A Theory of Condition , 1966 .

[33]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[34]  Petko Hr. Petkov,et al.  Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups , 1981, Kybernetika.

[35]  Paul Van Dooren,et al.  A fast algorithm for the computation of an upper bound on the µ-norm , 2000, Autom..

[36]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[37]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[38]  Gene H. Golub,et al.  Computing the singular values of products and quotients of matrices , 1995 .

[39]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[40]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[41]  L. D. Jong,et al.  Towards a formal definition of numerical stability , 1977 .

[42]  Adhemar Bultheel,et al.  Recursive algorithms for the matrix Padé problem , 1980 .

[43]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .