Estimating parameters of synchronous generators using square-root unscented Kalman filter

A new method to estimate the parameters of a synchronous generator using the square-root unscented Kalman filter (SRUKF) is presented in the paper. A third-order model for the parameter estimation of both round rotor and salient generators is developed first and then the SRUKF method is applied to the third-order model to perform the joint estimation of state variables and unknown generator parameters. The simulation results on a test system demonstrated the effectiveness of the proposed method in parameter recognition of a synchronous generator. The estimation processes of generator parameters steadily converge to the estimated values whereas the estimation processes of state variables are consistent with the dynamic responses in the numerical simulations.

[1]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[2]  M. Velez-Reyes,et al.  Dealing with Ill Conditioning in Recursive Parameter Estimation for a Synchronous Generator , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[3]  M. Miskovic,et al.  Making the model of synchronous generator using the data from monitoring system , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).

[4]  R.G. Harley,et al.  On-line measurement of synchronous machine parameters , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[5]  M. Dehghani,et al.  Nonlinear state space model identification of synchronous generators , 2008 .

[6]  Geir Hovland,et al.  Nonlinear estimation methods for parameter tracking in power plants , 2005 .

[7]  O. Malik,et al.  Synchronous generator third-order model parameter estimation using online experimental data , 2008 .

[8]  P. Kundur,et al.  Power system stability and control , 1994 .

[9]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[10]  M. Karrari,et al.  Application of active identification method to synchronous generator parameter estimation , 2006, 2006 IEEE Power Engineering Society General Meeting.

[11]  Q. H. Wu,et al.  Estimation of generator parameters using evolutionary programming , 1994 .

[12]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[13]  David W. Murray,et al.  An O(N²) Square Root Unscented Kalman Filter for Visual Simultaneous Localization and Mapping , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Gerardo Espinosa-Pérez,et al.  Validity testing of third-order nonlinear models for synchronous generators , 2009 .