Non-stationary Kalman filter parametrization of subspace models with applications to MPC

In this paper, a non-stationary Kalman filter parametrization of subspace identification models is adopted to deal with finite data windows. We show that the non-stationary Kalman filter parametrization is the solution to the least squares estimation of the Markov parameters from high-order ARX models. A recursive conversion between observer Markov parameters and system Markov parameters is developed under the non-stationary Kalman filter structure. The system Markov parameters can be obtained and further applied to disturbance modeling in model predictive control. Simulations are carried out to show the effect of the non-stationary Kalman filter parametrization with finite data.

[1]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[2]  Lennart Ljung,et al.  Parallel QR Implementation of Subspace Identification with Parsimonious Models , 2003 .

[3]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[4]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[5]  S. Ding,et al.  Closed-loop subspace identification: an orthogonal projection approach , 2004 .

[6]  C. R. Cutler,et al.  Optimal Solution of Dynamic Matrix Control with Linear Programing Techniques (LDMC) , 1985, 1985 American Control Conference.

[7]  Magnus Jansson,et al.  Subspace Identification and ARX Modeling , 2003 .

[8]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[9]  Yu Zhao,et al.  Progressive Parametrization in Subspace Identification Models with finite horizons , 2010, 49th IEEE Conference on Decision and Control (CDC).

[10]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[11]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .

[12]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[13]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[14]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[15]  Yu Zhao,et al.  Improving industrial mpc performance with data-driven disturbance modeling , 2011, IEEE Conference on Decision and Control and European Control Conference.

[16]  Gabriele Pannocchia,et al.  Disturbance models for offset‐free model‐predictive control , 2003 .

[17]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[18]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[19]  Wallace E. Larimore,et al.  Large Sample Efficiency for Adaptx Subspace System Identification with Unknown Feedback , 2004 .

[20]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..

[21]  Lennart Ljung,et al.  Subspace identification from closed loop data , 1996, Signal Process..

[22]  John F. MacGregor,et al.  A framework for subspace identification methods , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).