Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space

We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.

[1]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[2]  Pierre Dragicevic,et al.  Video browsing by direct manipulation , 2008, CHI.

[3]  Kenneth I. Joy,et al.  Visual Trends Analysis in Time-Varying Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[4]  Bruce Randall Donald,et al.  Accessible animation and customizable graphics via simplicial configuration modeling , 2000, SIGGRAPH.

[5]  Ingo Hotz,et al.  iPCA : An Interactive System for PCA-based Visual Analytics , 2008 .

[6]  Alex Endert,et al.  Visualization by Demonstration: An Interaction Paradigm for Visual Data Exploration , 2017, IEEE Transactions on Visualization and Computer Graphics.

[7]  Jie Xu,et al.  Interactive design space exploration and optimization for CAD models , 2017, ACM Trans. Graph..

[8]  Han-Wei Shen,et al.  An Information-Aware Framework for Exploring Multivariate Data Sets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Dominik Kraus,et al.  Conceptual Design Report: Dynamic Laser Compression Experiments at the HED Instrument of European XFEL , 2017 .

[10]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[11]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[12]  Alexander Kumpf,et al.  Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses , 2020, IEEE Transactions on Visualization and Computer Graphics.

[13]  Xiaotong Liu,et al.  Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots , 2017, IEEE Transactions on Visualization and Computer Graphics.

[14]  M. J. Enenhofer Spatial-Query-by-Sketch , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[15]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[16]  Bernd Hamann,et al.  Extracting, Visualizing and Tracking Mesoscale Ocean Eddies in Two-dimensional Image Sequences Using Contours and Moments , 2017, EnvirVis@EuroVis.

[17]  Donald H. House,et al.  Uncertainty Visualization by Representative Sampling from Prediction Ensembles , 2017, IEEE Transactions on Visualization and Computer Graphics.

[18]  Chris North,et al.  Observation-level interaction with statistical models for visual analytics , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[19]  Wolfgang Berger,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Hypermoval: Interactive Visual Validation of Regression Models for Real-time Simulation , 2022 .

[20]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[21]  Daniel F. Keefe,et al.  Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[23]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[24]  Anders Madsen,et al.  Conceptual Design Report: Scientific Instrument MID , 2011 .

[25]  Marco Cavallo,et al.  A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration , 2018, CHI.

[26]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[27]  Daniel A. Keim,et al.  Visual Analysis of Time‐Series Similarities for Anomaly Detection in Sensor Networks , 2014, Comput. Graph. Forum.

[28]  Dattatraya P. Dandekar,et al.  Dynamic response of two strain-hardened aluminum alloys , 2006 .

[29]  Chris North,et al.  Unifying the Sensemaking Loop with Semantic Interaction , 2011 .

[30]  Han-Wei Shen,et al.  Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis , 2016, IEEE Transactions on Visualization and Computer Graphics.

[31]  Marc Streit,et al.  WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making , 2017, IEEE Transactions on Visualization and Computer Graphics.

[32]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[33]  Chris North,et al.  Semantic Interaction: Coupling Cognition and Computation through Usable Interactive Analytics , 2015, IEEE Computer Graphics and Applications.

[34]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[35]  Mario Costa Sousa,et al.  iLAMP: Exploring high-dimensional spacing through backward multidimensional projection , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[36]  Siegfried Glenzer,et al.  Second User Workshop on High-Power Lasers at the Linac Coherent Light Source , 2014 .

[37]  Siegfried Glenzer,et al.  Fourth User Workshop on High-Power Lasers , 2017 .

[38]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[39]  David H. Rogers,et al.  Visualization and Analysis of Threats from Asteroid Ocean Impacts , 2016 .

[40]  Eduard Gröller,et al.  World Lines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Carla E. Brodley,et al.  Dis-function: Learning distance functions interactively , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[42]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[43]  Kenneth I. Joy,et al.  Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[44]  Klaus Mueller,et al.  The Subspace Voyager: Exploring High-Dimensional Data along a Continuum of Salient 3D Subspaces , 2016, IEEE Transactions on Visualization and Computer Graphics.

[45]  John T. Stasko,et al.  Dust & Magnet: Multivariate Information Visualization Using a Magnet Metaphor , 2005, Inf. Vis..

[46]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[47]  Chris North,et al.  Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering , 2012, IEEE Transactions on Visualization and Computer Graphics.

[48]  Kenneth I. Joy,et al.  Future Challenges for Ensemble Visualization , 2014, IEEE Computer Graphics and Applications.

[49]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[50]  Xiaotong Liu,et al.  Visualization of Time-Varying Weather Ensembles across Multiple Resolutions , 2017, IEEE Transactions on Visualization and Computer Graphics.

[51]  James P. Ahrens,et al.  An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[52]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[53]  Levent Burak Kara,et al.  Semantic shape editing using deformation handles , 2015, ACM Trans. Graph..

[54]  Charl P. Botha,et al.  Piece wise Laplacian‐based Projection for Interactive Data Exploration and Organization , 2011, Comput. Graph. Forum.

[55]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[56]  Chris North,et al.  Beyond Control Panels: Direct Manipulation for Visual Analytics , 2013, IEEE Computer Graphics and Applications.