Unscented Kalman Filter on Lie Groups for Visual Inertial Odometry

Fusing visual information with inertial measurements for state estimation has aroused major interests in recent years. However, combining a robust estimation with computational efficiency remains challenging, specifically for low-cost aerial vehicles in which the quality of the sensors and the processor power are constrained by size, weight and cost. In this paper, we present an innovative filter for stereo visual inertial odometry building on: i) the recently introduced stereo multistate constraint Kalman filter; ii) the invariant filtering theory; and iii) the unscented Kalman filter (UKF) on Lie groups. Our solution combines accuracy, robustness and versatility of the UKF. We then compare our approach to state-of-art solutions in terms of accuracy, robustness and computational complexity on the EuRoC dataset and a challenging MAV outdoor dataset.

[1]  G. Chirikjian Stochastic models, information theory, and lie groups , 2012 .

[2]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[3]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..

[4]  Kazuya Yoshida,et al.  Collaborative mapping of an earthquake‐damaged building via ground and aerial robots , 2012, J. Field Robotics.

[5]  Stergios I. Roumeliotis,et al.  A Quadratic-Complexity Observability-Constrained Unscented Kalman Filter for SLAM , 2013, IEEE Transactions on Robotics.

[6]  Vijay Kumar,et al.  Visual inertial odometry for quadrotors on SE(3) , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[8]  Dimitrios G. Kottas,et al.  Camera-IMU-based localization: Observability analysis and consistency improvement , 2014, Int. J. Robotics Res..

[9]  Audrey Giremus,et al.  Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions , 2014, Journal of Mathematical Imaging and Vision.

[10]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[11]  Søren Hauberg,et al.  Unscented Kalman Filtering on Riemannian Manifolds , 2013, Journal of Mathematical Imaging and Vision.

[12]  S Julier,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" - Reply , 2002 .

[13]  Gamini Dissanayake,et al.  An invariant-EKF VINS algorithm for improving consistency , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Jean-Philippe Condomines,et al.  Unscented Kalman filtering on Lie groups , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  Silvere Bonnabel Symmetries in observer design: review of some recent results and applications to EKF-based SLAM , 2011, ArXiv.

[16]  Dimitrios G. Kottas,et al.  Observability-constrained Vision-aided Inertial Navigation , 2012 .

[17]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Gaurav S. Sukhatme,et al.  Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..

[19]  Paul Timothy Furgale,et al.  Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems , 2014, IEEE Transactions on Robotics.

[20]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[21]  CarloneLuca,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2017 .

[22]  Axel Barrau,et al.  Invariant Kalman Filtering , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[23]  G. Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 2 , 2012 .

[24]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[25]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[26]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for a 3-D Invariant-EKF SLAM , 2017, IEEE Robotics and Automation Letters.

[27]  Axel Barrau,et al.  An EKF-SLAM algorithm with consistency properties , 2015, ArXiv.

[28]  Axel Barrau,et al.  The Invariant Extended Kalman Filter as a Stable Observer , 2014, IEEE Transactions on Automatic Control.