Can VAEs capture topological properties
暂无分享,去创建一个
[1] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[2] E. JØrgensen,et al. The central limit problem for geodesic random walks , 1975 .
[3] 市原 完治. Brownian motion on a Riemannian manifold , 1981 .
[4] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[5] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[6] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[7] Neil D. Lawrence,et al. Metrics for Probabilistic Geometries , 2014, UAI.
[8] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[9] Max Welling,et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.
[10] Jianxiong Xiao,et al. 3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[11] Murray Shanahan,et al. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.
[12] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[13] Shakir Mohamed,et al. Normalizing Flows on Riemannian Manifolds , 2016, ArXiv.
[14] Max Welling,et al. Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.
[15] Christopher Burgess,et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.
[16] Andriy Mnih,et al. Disentangling by Factorising , 2018, ICML.
[17] Abhishek Kumar,et al. Variational Inference of Disentangled Latent Concepts from Unlabeled Observations , 2017, ICLR.
[18] Guillaume Desjardins,et al. Understanding disentangling in β-VAE , 2018, ArXiv.
[19] Luca Falorsi,et al. Topological Constraints on Homeomorphic Auto-Encoding , 2018, ArXiv.
[20] David Pfau,et al. Towards a Definition of Disentangled Representations , 2018, ArXiv.
[21] Max Welling,et al. VAE with a VampPrior , 2017, AISTATS.
[22] Nicola De Cao,et al. Hyperspherical Variational Auto-Encoders , 2018, UAI 2018.
[23] Nicola De Cao,et al. Explorations in Homeomorphic Variational Auto-Encoding , 2018, ArXiv.
[24] Roger B. Grosse,et al. Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.
[25] Richard S. Zemel,et al. Learning Latent Subspaces in Variational Autoencoders , 2018, NeurIPS.
[26] Chang Liu,et al. Riemannian Stein Variational Gradient Descent for Bayesian Inference , 2017, AAAI.
[27] Lars Kai Hansen,et al. Latent Space Oddity: on the Curvature of Deep Generative Models , 2017, ICLR.
[28] Shakir Mohamed,et al. Implicit Reparameterization Gradients , 2018, NeurIPS.
[29] Vlado Menkovski,et al. Diffusion Variational Autoencoders , 2019, IJCAI.