Impact of class imbalance in VeReMi dataset for misbehavior detection in autonomous vehicles

[1]  J. Jung,et al.  A multivariate Gaussian mixture model for anomaly detection in transient current signature of control element drive mechanism , 2023, Nuclear Engineering and Design.

[2]  Anna V. Kalyuzhnaya,et al.  Advanced Approach for Distributions Parameters Learning in Bayesian Networks with Gaussian Mixture Models and Discriminative Models , 2023, Mathematics.

[3]  Yu-Ting Fu,et al.  Network traffic anomaly detection method based on multi-scale residual classifier , 2022, Comput. Commun..

[4]  Amir F. Atiya,et al.  A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance , 2019, Inf. Sci..

[5]  Prashant Chatur,et al.  Medical decision support system for extremely imbalanced datasets , 2017, Inf. Sci..

[6]  Bo Yang,et al.  Imbalanced traffic identification using an imbalanced data gravitation-based classification model , 2017, Comput. Commun..

[7]  Tao Qin,et al.  Robust application identification methods for P2P and VoIP traffic classification in backbone networks , 2015, Knowl. Based Syst..

[8]  Z. Liu,et al.  A comparison of improving multi-class imbalance for internet traffic classification , 2014, Inf. Syst. Frontiers.

[9]  Tony R. Martinez,et al.  An instance level analysis of data complexity , 2014, Machine Learning.

[10]  Jesús E. Díaz-Verdejo,et al.  A multilevel taxonomy and requirements for an optimal traffic‐classification model , 2014, Int. J. Netw. Manag..

[11]  Jun Zhang,et al.  Unsupervised traffic classification using flow statistical properties and IP packet payload , 2013, J. Comput. Syst. Sci..

[12]  Longbing Cao,et al.  Effective detection of sophisticated online banking fraud on extremely imbalanced data , 2012, World Wide Web.

[13]  Mikel Galar,et al.  Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches , 2013, Knowl. Based Syst..

[14]  Josef Kittler,et al.  Inverse random under sampling for class imbalance problem and its application to multi-label classification , 2012, Pattern Recognit..

[15]  Anirban Mahanti,et al.  Byte me: a case for byte accuracy in traffic classification , 2007, MineNet '07.

[16]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[17]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[18]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[19]  Punam Bedi,et al.  Siam-IDS: Handling class imbalance problem in Intrusion Detection Systems using Siamese Neural Network , 2020 .

[20]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..