Verify LTL with Fairness Assumptions Efficiently

This paper deals with model checking problems with respect to LTL properties under fairness assumptions. We first present an efficient algorithm to deal with a fragment of fairness assumptions and then extend the algorithm to handle arbitrary ones. Notably, by making use of some syntactic transformations, our algorithm avoids constructing corresponding Büchi automata for the whole fairness assumptions, which can be very large in practice. We implement our algorithm in NuSMV and consider a large selection of formulas. Our experiments show that in many cases our approach exceeds the automata-theoretic approach up to several orders of magnitude, in both time and memory.

[1]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[2]  Joseph Sifakis,et al.  Fairness and related properties in transition systems — a temporal logic to deal with fairness , 1983, Acta Informatica.

[3]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[4]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[5]  J. Aronson Safety , 2009, BMJ : British Medical Journal.

[6]  Christel Baier,et al.  Principles of model checking , 2008 .

[7]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[8]  Nick Hawes,et al.  Optimal and dynamic planning for Markov decision processes with co-safe LTL specifications , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Kavita Ravi,et al.  Efficient Decision Procedures for Model Checking of Linear Time Logic Properties , 1999, CAV.

[10]  Leslie Lamport,et al.  Proving the Correctness of Multiprocess Programs , 1977, IEEE Transactions on Software Engineering.

[11]  W. Marsden I and J , 2012 .

[12]  Fabrice Kordon,et al.  Strength-Based Decomposition of the Property Büchi Automaton for Faster Model Checking , 2013, TACAS.

[13]  Mahesh Viswanathan,et al.  Limit Deterministic and Probabilistic Automata for LTL ∖ GU , 2015, TACAS.

[14]  Bowen Alpern,et al.  Recognizing safety and liveness , 2005, Distributed Computing.

[15]  Jan Kretínský,et al.  Limit-Deterministic Büchi Automata for Linear Temporal Logic , 2016, CAV.

[16]  Stephan Merz,et al.  Truly On-The-Fly LTL Model Checking , 2005, TACAS.

[17]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[18]  A. Prasad Sistla,et al.  Safety, liveness and fairness in temporal logic , 1994, Formal Aspects of Computing.

[19]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[20]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, Formal Methods Syst. Des..

[21]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[22]  Fausto Giunchiglia,et al.  NUSMV: a new symbolic model checker , 2000, International Journal on Software Tools for Technology Transfer.

[23]  Jan Kretínský,et al.  From LTL to Deterministic Automata: A Safraless Compositional Approach , 2014, CAV.

[24]  Mihalis Yannakakis,et al.  Markov Decision Processes and Regular Events (Extended Abstract) , 1990, ICALP.

[25]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[26]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, CAV.

[27]  Ivana Cerná,et al.  Relating Hierarchy of Temporal Properties to Model Checking , 2003, MFCS.

[28]  Denis Poitrenaud,et al.  SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata , 2004, The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings..

[29]  Radek Pelánek,et al.  BEEM: Benchmarks for Explicit Model Checkers , 2007, SPIN.

[30]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[31]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[32]  Lydia E. Kavraki,et al.  Sampling-based motion planning with temporal goals , 2010, 2010 IEEE International Conference on Robotics and Automation.

[33]  Moshe Y. Vardi,et al.  LTL Satisfiability Checking , 2007, SPIN.

[34]  Lutz Priese,et al.  Fairness , 1988, Bull. EATCS.

[35]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.