Characterizing Autopoiesis in the Game of Life

Maturana and Varela's concept of autopoiesis defines the essential organization of living systems and serves as a foundation for their biology of cognition and the enactive approach to cognitive science. As an initial step toward a more formal analysis of autopoiesis, this article investigates its application to the compact, recurrent spatiotemporal patterns that arise in Conway's Game-of-Life cellular automaton. In particular, we demonstrate how such entities can be formulated as self-constructing networks of interdependent processes that maintain their own boundaries. We then characterize the specific organizations of several such entities, suggest a way to simplify the descriptions of these organizations, and briefly consider the transformation of such organizations over time.

[1]  M. Muir Physical Chemistry , 1888, Nature.

[2]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[3]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[4]  Milan Zeleny,et al.  SELF-ORGANIZATION OF LIVING SYSTEMS: A FORMAL MODEL OF AUTOPOIESIS , 1977 .

[5]  L. Schulman,et al.  Statistical mechanics of a dynamical system based on Conway's game of Life , 1978 .

[6]  F. Varela Principles of biological autonomy , 1979 .

[7]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[8]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[9]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[10]  Martin Gardner,et al.  Wheels, life, and other mathematical amusements , 1983 .

[11]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[12]  G. Vichniac Simulating physics with cellular automata , 1984 .

[13]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[14]  H. Maturana The tree of knowledge , 1987 .

[15]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[16]  S. Ruffo,et al.  Some facts of life , 1991 .

[17]  W. Fontana,et al.  “The arrival of the fittest”: Toward a theory of biological organization , 1994 .

[18]  L. Dartnell Life in the universe. , 1994, Scientific American.

[19]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[20]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[21]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[22]  Petr Sosík,et al.  Advances in Artificial Life , 2001, Lecture Notes in Computer Science.

[23]  Andrew Ilachinski,et al.  Cellular Automata: A Discrete Universe , 2001 .

[24]  Norman Margolus,et al.  Physics-Like Models of Computation , 2002, Collision-Based Computing.

[25]  Elwyn R. Berlekamp,et al.  Winning Ways for Your Mathematical Plays, Volume 2 , 2003 .

[26]  P. Luisi Autopoiesis: a review and a reappraisal , 2003, Naturwissenschaften.

[27]  E. Szathmáry,et al.  The principles of life , 2003 .

[28]  K. M. Evans Larger than Life: threshold-range scaling of Life’s coherent structures , 2003 .

[29]  C. Moore,et al.  CELLULAR AUTOMATA: A DISCRETE UNIVERSE By ANDREW ILACHINSKI: 808 pp., £76.00, ISBN 981-02-4623-4 (World Scientific, Singapore, 2001). , 2003 .

[30]  Randall D. Beer,et al.  Autopoiesis and Cognition in the Game of Life , 2004, Artificial Life.

[31]  Paul Bourgine,et al.  Autopoiesis and Cognition , 2004, Artificial Life.

[32]  Mark A. Sephton,et al.  An Introduction to Astrobiology , 2004 .

[33]  Barry McMullin,et al.  Thirty Years of Computational Autopoiesis: A Review , 2004, Artificial Life.

[34]  F. Peper,et al.  The Game of Life at finite temperature , 2004 .

[35]  P. Howard An introduction to astrobiology , 2005 .

[36]  E. D. Paolo,et al.  Autopoiesis, Adaptivity, Teleology, Agency , 2005 .

[37]  Pietro Speroni di Fenizio,et al.  Chemical Organisation Theory , 2005, Bulletin of mathematical biology.

[38]  P. Luisi The Emergence of Life: Autopoiesis: the logic of cellular life , 2006 .

[39]  S. Shostak,et al.  Life in the Universe , 2006 .

[40]  Peter Dittrich,et al.  Chemical Organisation Theory , 2007, Bulletin of mathematical biology.

[41]  Marcus Pivato RealLife: The continuum limit of Larger than Life cellular automata , 2007, Theor. Comput. Sci..

[42]  E. Thompson Mind in Life , 2007 .

[43]  J. Boyle Molecular biology of the cell, 5th edition by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter , 2008 .

[44]  E. D. Di Paolo Extended Life , 2008 .

[45]  Ezequiel A. Di Paolo,et al.  Integrating Autopoiesis and Behavior: An Exploration in Computational Chemo-ethology , 2009, Adapt. Behav..

[46]  R. Mizen The embodied mind. , 2009, The Journal of analytical psychology.

[47]  Nathaniel Virgo,et al.  The Role of the Spatial Boundary in Autopoiesis , 2009, ECAL.

[48]  Andrew Adamatzky,et al.  Game of Life Cellular Automata , 2010 .

[49]  Tom Froese,et al.  Life After Ashby: Ultrastability and the Autopoietic Foundations of Biological Autonomy , 2010, Cybern. Hum. Knowing.

[50]  M. Elowitz,et al.  Build life to understand it , 2010, Nature.

[51]  N. Virgo Thermodynamics and the structure of living systems , 2011 .

[52]  D. Dennett Shall We Tango? No, but Thanks for Asking , 2011 .

[53]  A. Cornish-Bowden,et al.  From L'Homme Machine to metabolic closure: steps towards understanding life. , 2011, Journal of theoretical biology.

[54]  Pablo Razeto-Barry Autopoiesis 40 years Later. A Review and a Reformulation , 2012, Origins of Life and Evolution of Biospheres.

[55]  Karen M Polizzi What is synthetic biology? , 2013, Methods in molecular biology.

[56]  Mario Villalobos,et al.  Enactive cognitive science: revisionism or revolution? , 2013, Adapt. Behav..

[57]  Michael D. Kirchhoff Enaction: Toward a New Paradigm for Cognitive Science , 2013 .

[58]  Nathaniel Virgo,et al.  Motility at the Origin of Life: Its Characterization and a Model , 2013, Artificial Life.

[59]  Randall D. Beer,et al.  The Cognitive Domain of a Glider in the Game of Life , 2014, Artificial Life.

[60]  Eran Agmon,et al.  Quantifying Robustness in a Spatial Model of Metabolism-Boundary Co-Construction , 2014, ALIFE.

[61]  Xabier E. Barandiaran,et al.  Norm-Establishing and Norm-Following in Autonomous Agency , 2014, Artificial Life.

[62]  Doreen Schweizer,et al.  Cellular Automata And Complexity Collected Papers , 2016 .

[63]  Leon Hirsch,et al.  Cellular Automata A Discrete Universe , 2016 .

[64]  N. Boyce Life itself , 2018, The Lancet.

[65]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[66]  Christopher Alexander THE PHENOMENON OF LIFE , 2020, The Nature of Order, Book 1: The Phenomenon of Life.