Rich analysis and rational models: inferring individual behavior from infant looking data.

Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis framework for infant looking times. We formalize (i) a statistical learning model, (ii) a parametric linking between the learning model's beliefs and infants' looking behavior, and (iii) a data analysis approach and model that infers parameters of the cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd, Piantadosi and Aslin (iv) of a U-shaped relationship between look-away probability and stimulus complexity even holds within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic expectations about the world.

[1]  B. Scholl,et al.  The Automaticity of Visual Statistical Learning Statistical Learning , 2005 .

[2]  Todd M Gureckis,et al.  Self-Directed Learning , 2012, Perspectives on psychological science : a journal of the Association for Psychological Science.

[3]  J. Kagan,et al.  Individual Differences in the Infant's Distribution of Attention to Stimulus Discrepancy. , 1970 .

[4]  R. Aslin,et al.  Infants are sensitive to within-category variation in speech perception , 2005, Cognition.

[5]  Thomas L. Griffiths,et al.  A Primer on Probabilistic Inference , 2008 .

[6]  Noah D. Goodman Learning and the language of thought , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[7]  Sarah C. Creel,et al.  Distant melodies: statistical learning of nonadjacent dependencies in tone sequences. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[8]  R. Baillargeon Object permanence in 3½- and 4½-month-old infants. , 1987 .

[9]  P. V. Rao,et al.  Applied Survival Analysis: Regression Modeling of Time to Event Data , 2000 .

[10]  Wensheng Guo Functional Mixed Effects Models , 2002 .

[11]  J. Deloache Rate of habituation and visual memory in infants. , 1976, Child development.

[12]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[13]  J Kagan,et al.  Infant attention to auditory discrepancy. , 1976, Child development.

[14]  W. Geisler Ideal Observer Analysis , 2002 .

[15]  Fei Xu,et al.  Induction, Overhypothesis, and the Origin of Abstract Knowledge , 2010, Psychological science.

[16]  Daniel Yurovsky,et al.  Quantitative Linking Hypotheses for Infant Eye Movements , 2012, CogSci.

[17]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[18]  E. Newport,et al.  WORD SEGMENTATION : THE ROLE OF DISTRIBUTIONAL CUES , 1996 .

[19]  Michael D. Lee,et al.  A Model of Knower-Level Behavior in Number Concept Development , 2009, Cogn. Sci..

[20]  J. Kruschke Doing Bayesian Data Analysis: A Tutorial with R and BUGS , 2010 .

[21]  Richard N Aslin,et al.  Statistical learning of new visual feature combinations by infants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Nathaniel J. Smith,et al.  Optimal Processing Times in Reading: A Formal Model and Empirical Investigation , 2008 .

[23]  L. M. M.-T. Theory of Probability , 1929, Nature.

[24]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[25]  Jacob Cohen The earth is round (p < .05) , 1994 .

[26]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[27]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[28]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[29]  N. Chater,et al.  Ten years of the rational analysis of cognition , 1999, Trends in Cognitive Sciences.

[30]  H. Ebbinghaus Memory A Contribution Toexperimental Psychology , 1913 .

[31]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[32]  Neil P. Bardhan,et al.  Adults' Self-Directed Learning of an Artificial Lexicon: The Dynamics of Neighborhood Reorganization. , 2010 .

[33]  Philip Hougaard,et al.  Analysis of Multivariate Survival Data , 2001 .

[34]  W. James,et al.  The Principles of Psychology. , 1983 .

[35]  John Palmer,et al.  Relations Among Spontaneous Preferences, Familiarized Preferences, and Novelty Effects: Measurements With Forced-Choice Techniques. , 2005, Infancy : the official journal of the International Society on Infant Studies.

[36]  Zsuzsa Kaldy,et al.  A new method for calibrating perceptual salience across dimensions in infants: the case of color vs. luminance. , 2006, Developmental science.

[37]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[38]  M. Lee,et al.  Bayesian statistical inference in psychology: comment on Trafimow (2003). , 2005, Psychological review.

[39]  E. W. Ames,et al.  A multifactor model of infant preferences for novel and familiar stimuli. , 1988 .

[40]  Linda B. Smith,et al.  Infants rapidly learn word-referent mappings via cross-situational statistics , 2008, Cognition.

[41]  H. Spencer The Principles of Psychology - Vol. I , 2016 .

[42]  Elizabeth K. Johnson,et al.  Statistical learning of tone sequences by human infants and adults , 1999, Cognition.

[43]  M. Goldsmith,et al.  Statistical Learning by 8-Month-Old Infants , 1996 .

[44]  R. Aslin What's in a look? , 2007, Developmental science.

[45]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[46]  Scott Sinnett,et al.  Speech segmentation by statistical learning depends on attention , 2005, Cognition.

[47]  Richard N. Aslin,et al.  The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex , 2012, PloS one.

[48]  S. Denison,et al.  Statistical inference and sensitivity to sampling in 11-month-old infants , 2009, Cognition.

[49]  D. Cox,et al.  Analysis of Survival Data. , 1986 .

[50]  Barbara W Sarnecka,et al.  Levels of number knowledge during early childhood. , 2009, Journal of experimental child psychology.

[51]  Michael D. Lee,et al.  Number-knower levels in young children: Insights from Bayesian modeling , 2011, Cognition.

[52]  LouAnn Gerken,et al.  Infants avoid 'labouring in vain' by attending more to learnable than unlearnable linguistic patterns. , 2011, Developmental science.

[53]  J. Tenenbaum,et al.  A tutorial introduction to Bayesian models of cognitive development , 2011, Cognition.

[54]  J. Vincent,et al.  Habituation rate and the infant's response to visual discrepancies. , 1973, Child development.

[55]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[56]  Joshua B. Tenenbaum,et al.  Beyond Boolean logic: exploring representation languages for learning complex concepts , 2010 .

[57]  Keying Ye,et al.  Frequentist validity of posterior quantiles for a two-parameter exponential family , 1996 .

[58]  J. Bernardo,et al.  THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.

[59]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[60]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[61]  Fei Xu,et al.  Intuitive statistics by 8-month-old infants , 2008, Proceedings of the National Academy of Sciences.

[62]  John K Kruschke,et al.  Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison , 2011, Perspectives on psychological science : a journal of the Association for Psychological Science.

[63]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[64]  Hermann Ebbinghaus,et al.  Memory: a contribution to experimental psychology. , 1987, Annals of neurosciences.

[65]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[66]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[67]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[68]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[69]  J. Stockman Pure Reasoning in 12-Month-Old Infants as Probabilistic Inference , 2013 .

[70]  J. Tenenbaum,et al.  Special issue on “Probabilistic models of cognition , 2022 .

[71]  W. N. Dember,et al.  Analysis of exploratory, manipulatory, and curiosity behaviors. , 1957, Psychological review.

[72]  B. Roder,et al.  Infants' Preferences for Familiarity and Novelty During the Course of Visual Processing. , 2000, Infancy : the official journal of the International Society on Infant Studies.

[73]  P. Godfrey‐Smith Theory and reality : an introduction to the philosophy of science , 2003 .

[74]  N. Chater,et al.  The probabilistic mind: prospects for Bayesian cognitive science , 2008 .

[75]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[76]  Related Topics,et al.  Survival analysis : state of the art , 1992 .

[77]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[78]  John R. Anderson,et al.  Reflections of the Environment in Memory Form of the Memory Functions , 2022 .

[79]  A. Gottfried,et al.  FAMILIARITY AND NOVELTY PREFERENCES IN INFANT RECOGNITION MEMORY: IMPLICATIONS FOR INFORMATION PROCESSING , 1982 .

[80]  R. Mccall,et al.  Attention in infants as a function of magnitude of discrepancy and habituation rate , 1969 .

[81]  James O. Berger,et al.  A Catalog of Noninformative Priors , 1996 .

[82]  Noah D. Goodman,et al.  Learning Grounded Causal Models , 2007 .

[83]  Hermann Ebbinghaus (1885) Memory: A Contribution to Experimental Psychology , 2013, Annals of Neurosciences.

[84]  E. N. Solokov Perception and the conditioned reflex , 1963 .