Local convergence of the Levenberg–Marquardt method under Hölder metric subregularity
暂无分享,去创建一个
Masoud Ahookhosh | Ronan M. T. Fleming | Francisco J. Aragón Artacho | Phan T. Vuong | F. J. A. Artacho | R. Fleming | Masoud Ahookhosh | P. Vuong
[1] Alexander Y. Kruger,et al. Error Bounds and Hölder Metric Subregularity , 2014, 1411.6414.
[2] D. Klatte. Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .
[3] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[4] M. Fukushima,et al. On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .
[5] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[6] Andreas Fischer,et al. Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..
[7] Benar Fux Svaiter,et al. Algebraic rules for computing the regularization parameter of the Levenberg–Marquardt method , 2016, Comput. Optim. Appl..
[8] A. Hasegawa. Plasma instabilities and nonlinear effects , 1975 .
[9] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[10] Hédy Attouch,et al. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..
[11] Boris S. Mordukhovich,et al. Hölder Metric Subregularity with Applications to Proximal Point Method , 2012, SIAM J. Optim..
[12] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[13] David A. Fell,et al. Detection of stoichiometric inconsistencies in biomolecular models , 2008, Bioinform..
[14] Ronan M. T. Fleming,et al. Conditions for duality between fluxes and concentrations in biochemical networks. , 2015, Journal of theoretical biology.
[15] Lei Guo,et al. Solving Mathematical Programs with Equilibrium Constraints , 2015, J. Optim. Theory Appl..
[16] Jong-Shi Pang,et al. Error bounds in mathematical programming , 1997, Math. Program..
[17] Ya-Xiang Yuan,et al. On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.
[18] Jinyan Fan,et al. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence , 2012, Math. Comput..
[19] Alexey F. Izmailov,et al. Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications , 2001, Math. Program..
[20] R. Rockafellar,et al. Implicit Functions and Solution Mappings , 2009 .
[21] Stefania Bellavia,et al. Strong local convergence properties of adaptive regularized methods for nonlinear least squares , 2015 .
[22] Krzysztof Kurdyka,et al. Separation of real algebraic sets and the Łojasiewicz exponent , 2014 .
[23] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[24] M. Fukushima,et al. Erratum to Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints , 2005 .
[25] Ronan M. T. Fleming,et al. Globally convergent algorithms for finding zeros of duplomonotone mappings , 2015, Optim. Lett..
[26] Jinyan Fan,et al. A note on the Levenberg-Marquardt parameter , 2009, Appl. Math. Comput..
[27] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[28] A. F. Izmailov,et al. Newton-Type Methods for Optimization and Variational Problems , 2014 .
[29] Lihua Jiang,et al. Some research on Levenberg-Marquardt method for the nonlinear equations , 2007, Appl. Math. Comput..
[30] Francisco J. Planes,et al. Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. , 2017, 1710.04038.
[31] Alfredo N. Iusem,et al. The effect of calmness on the solution set of systems of nonlinear equations , 2013, Math. Program..
[32] Huynh van Ngai,et al. Global Error Bounds for Systems of Convex Polynomials over Polyhedral Constraints , 2015, SIAM J. Optim..
[33] Andreas Fischer,et al. A Globally Convergent LP-Newton Method , 2016, SIAM J. Optim..
[34] Boris S. Mordukhovich,et al. Higher-order metric subregularity and its applications , 2015, J. Glob. Optim..
[35] Jinyan Fan. Convergence Rate of The Trust Region Method for Nonlinear Equations Under Local Error Bound Condition , 2006, Comput. Optim. Appl..
[36] Alexander Kruger,et al. Strong metric subregularity of mappings in variational analysis and optimization , 2017, 1701.02078.
[37] Ronan M. T. Fleming,et al. Accelerating the DC algorithm for smooth functions , 2018, Math. Program..
[38] A. Hoffman. On approximate solutions of systems of linear inequalities , 1952 .
[39] Alexey F. Izmailov,et al. The Theory of 2-Regularity for Mappings with Lipschitzian Deriatives and its Applications to Optimality Conditions , 2002, Math. Oper. Res..
[40] Hà Huy Vui. Global Hölderian Error Bound for Nondegenerate Polynomials , 2013, SIAM J. Optim..
[41] J. Bolte,et al. Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .
[42] Gui-Hua Lin,et al. Improved convergence results for a modified Levenberg–Marquardt method for nonlinear equations and applications in MPCC , 2016, Optim. Methods Softw..
[43] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[44] Adrian S. Lewis,et al. The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..
[45] J. Gwozdziewicz. The Łojasiewicz exponent of an analytic function at an isolated zero , 1999 .
[46] Steffen Klamt,et al. Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..
[47] Anne Richelle,et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.
[48] Ronan M. T. Fleming,et al. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks , 2016, PLoS Comput. Biol..
[49] Nicholas I. M. Gould,et al. Convergence of a Regularized Euclidean Residual Algorithm for Nonlinear Least-Squares , 2010, SIAM J. Numer. Anal..
[50] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[51] G. Eilenberger. Solitons: Mathematical Methods for Physicists , 1983 .
[52] C. Kanzow. Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties , 2004 .
[53] Ya-Xiang Yuan,et al. Recent advances in trust region algorithms , 2015, Mathematical Programming.
[54] Ronan M. T. Fleming,et al. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration. , 2011, Journal of theoretical biology.
[55] S. Łojasiewicz. Ensembles semi-analytiques , 1965 .
[56] Benar Fux Svaiter,et al. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..