Considering measurement uncertainty in dynamic object tracking for autonomous driving applications

Abstract Measurement uncertainty plays an important role in every real-world perception task. This paper describes the influence of measurement uncertainty in state estimation, which is the main part of Dynamic Object Tracking. Its base is the probabilistic Bayesian Filtering approach. Practical examples and tools for choosing the correct filter implementation including measurement models and their conversion, for different kinds of sensors are presented.

[1]  Yue Zhang,et al.  MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS , 2016 .

[2]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Hans-Joachim Wünsche,et al.  Robust long-range teach-and-repeat in non-urban environments , 2017, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).

[4]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[5]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[6]  Volker Graefe,et al.  Dynamic monocular machine vision , 1988, Machine Vision and Applications.

[7]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[8]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[9]  Jeffrey K. Uhlmann,et al.  A consistent, debiased method for converting between polar and Cartesian coordinate systems , 1997 .

[10]  Seung-Woo Seo,et al.  Decision making for automated driving at unsignalized intersection , 2015, 2015 15th International Conference on Control, Automation and Systems (ICCAS).

[11]  Y. Bar-Shalom Tracking and data association , 1988 .

[12]  Hans-Joachim Wünsche,et al.  Heterogeneous multi-sensor fusion for extended objects in automotive scenarios using Gaussian processes and a GMPHD-filter , 2017, 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[13]  Uwe D. Hanebeck,et al.  Level-Set Random Hypersurface Models for tracking non-convex extended objects , 2013, Proceedings of the 16th International Conference on Information Fusion.

[14]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[15]  Hans-Joachim Wünsche,et al.  Radar reflection characteristics of vehicles for contour and feature estimation , 2017, 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[16]  Rüdiger Dillmann,et al.  Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[17]  R. Piché Online tests of Kalman filter consistency , 2016 .

[18]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[19]  Ferdinand van der Heijden Consistency checks for particle filters , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[21]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[22]  Gaurav S. Sukhatme,et al.  Bias Reduction and Filter Convergence for Long Range Stereo , 2005, ISRR.

[23]  Longbin Mo,et al.  Alternative unbiased consistent converted measurements for target tracking , 1997 .

[24]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[25]  An Li,et al.  Transformed Unscented Kalman Filter , 2013, IEEE Transactions on Automatic Control.

[26]  G. Mauris,et al.  A fuzzy approach for the expression of uncertainty in measurement , 2001 .

[27]  Hans-Joachim Wünsche,et al.  An Orientation Corrected Bounding Box Fit Based on the Convex Hull under Real Time Constraints , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[28]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[29]  Markus Maurer,et al.  Towards Tactical Lane Change Behavior Planning for Automated Vehicles , 2015, 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

[30]  Achim Kampker,et al.  Towards tactical behaviour planning under uncertainties for automated vehicles in urban scenarios , 2017, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).

[31]  Hans-Joachim Wünsche,et al.  Fast Multi-Pass 3D Point Segmentation Based on a Structured Mesh Graph for Ground Vehicles , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[32]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[33]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[34]  Panos E. Trahanias,et al.  Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction , 2010, Int. J. Soc. Robotics.

[35]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[36]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[37]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[38]  Pramod K. Varshney,et al.  Curvature nonlinearity measure and filter divergence detector for nonlinear tracking problems , 2008, 2008 11th International Conference on Information Fusion.

[39]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[40]  Klaus D. Schmidt,et al.  Maß und Wahrscheinlichkeit , 2011 .

[41]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[42]  Vesselin P. Jilkov,et al.  Survey of maneuvering target tracking: III. Measurement models , 2001 .

[43]  Branko Ristic,et al.  Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty , 2012, IEEE Transactions on Signal Processing.

[44]  Yaakov Bar-Shalom,et al.  Tracking with debiased consistent converted measurements versus EKF , 1993 .