Novel recurrent neural network for modelling biological networks: Oscillatory p53 interaction dynamics

Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more quantitative data become available on individual proteins, the RNN would be able to refine parameter estimation and mapping of temporal dynamics of individual signalling molecules as well as signalling networks as a system. Moreover, RNN can be used to modularise large signalling networks.

[1]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[2]  K. Vousden,et al.  Coping with stress: multiple ways to activate p53 , 2007, Oncogene.

[3]  R. Ribeiro,et al.  TP53-Associated Pediatric Malignancies. , 2011, Genes & cancer.

[4]  Martin T. Hagan,et al.  Neural network design , 1995 .

[5]  A. Goldbeter,et al.  Robustness of circadian rhythms with respect to molecular noise , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Eugenio Cinquemani,et al.  Identification of metabolic network models from incomplete high-throughput datasets , 2011, Bioinform..

[7]  Eberhard O. Voit,et al.  Integrative biological systems modeling: challenges and opportunities , 2009, Frontiers of Computer Science in China.

[8]  Anthony A. Hyman,et al.  Whither systems biology , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  Terence P. Speed,et al.  Bayesian Inference of Signaling Network Topology in a Cancer Cell Line , 2012, Bioinform..

[10]  Edgar N. Sánchez,et al.  Discrete-Time Reduced Order Neural Observers for Uncertain Nonlinear Systems , 2010, Int. J. Neural Syst..

[11]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Jacob J Hughey,et al.  Computational modeling of mammalian signaling networks , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[13]  S. Bornholdt,et al.  Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast , 2007, PloS one.

[14]  L. Jiménez,et al.  A Spatial Branch-and-Bound Framework for the Global Optimization of Kinetic Models of Metabolic Networks , 2011 .

[15]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[16]  Sandhya Samarasinghe,et al.  An unbiased sensitivity analysis reveals important parameters controlling periodicity of circadian clock , 2010, Biotechnology and bioengineering.

[17]  Seung Wook Baek,et al.  Kinetic Parameter Estimation of a Commercial Fe-Zeolite SCR , 2011 .

[18]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[19]  Sven Sahle,et al.  Applications and trends in systems biology in biochemistry , 2011, The FEBS journal.

[20]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[21]  Rebecca W Doerge,et al.  An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data , 2010, Statistical applications in genetics and molecular biology.

[22]  Feng-Sheng Wang,et al.  Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..

[23]  Susana Vinga,et al.  A Survey on Methods for Modeling and Analyzing Integrated Biological Networks , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[24]  N. Monk Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays , 2003, Current Biology.

[25]  David R. Gilbert,et al.  Computational methodologies for modelling, analysis and simulation of signalling networks , 2006, Briefings Bioinform..

[26]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[27]  G. Lahav,et al.  Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. , 2008, Molecular cell.

[28]  R. Albert,et al.  Discrete dynamic modeling of cellular signaling networks. , 2009, Methods in enzymology.

[29]  T. Jaakkola,et al.  Bayesian Network Approach to Cell Signaling Pathway Modeling , 2002, Science's STKE.

[30]  U Alon,et al.  Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[32]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[33]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[34]  Gregery T. Buzzard,et al.  Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics , 2010, PLoS Comput. Biol..

[35]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[37]  S. H. van der Burg,et al.  Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies , 2011, Journal of biomedicine & biotechnology.

[38]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[39]  David P Lane,et al.  p53 isoforms can regulate p53 transcriptional activity. , 2005, Genes & development.

[40]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[41]  D. Bray,et al.  Intracellular signalling as a parallel distributed process. , 1990, Journal of theoretical biology.

[42]  X. Hou,et al.  A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation , 2011, Oncogene.

[43]  Jin-Peng Qi,et al.  Cellular responding kinetics based on a model of gene regulatory networks under radiotherapy , 2010 .

[44]  R. Apweiler,et al.  On the Importance of Comprehensible Classification Models for Protein Function Prediction , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  James C. Liao,et al.  Ensemble modeling and related mathematical modeling of metabolic networks , 2009 .

[46]  A. Levine,et al.  The p53 functional circuit. , 2001, Journal of cell science.

[47]  Huamin Wang,et al.  Example-based wrinkle synthesis for clothing animation , 2010, SIGGRAPH 2010.

[48]  Sandhya Samarasinghe,et al.  Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition , 2006 .

[49]  Sandhya Samarasinghe,et al.  Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells , 2010, Biosyst..

[50]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[51]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[52]  Mark Girolami,et al.  Systems biology: opening new avenues in clinical research. , 2010, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[53]  Lydia E. Kavraki,et al.  Computational challenges in systems biology , 2009, Comput. Sci. Rev..

[54]  Steffen Klamt,et al.  Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling , 2009, BMC Systems Biology.

[55]  Carole J. Proctor,et al.  Explaining oscillations and variability in the p53-Mdm2 system , 2008, BMC Systems Biology.

[56]  Hanspeter Herzel,et al.  How to Achieve Fast Entrainment? The Timescale to Synchronization , 2009, PloS one.

[57]  Andrea Sackmann,et al.  An analysis of the Petri net based model of the human body iron homeostasis process , 2007, Comput. Biol. Chem..

[58]  Shiwei Yan,et al.  Delay Hill dynamics in regulatory biological systems. , 2011, Molecular bioSystems.

[59]  T. Berg Small-molecule inhibitors of protein-protein interactions. , 2008, Current opinion in drug discovery & development.

[60]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[61]  M. Vidal,et al.  Integrating 'omic' information: a bridge between genomics and systems biology. , 2003, Trends in genetics : TIG.

[62]  Eberhard O. Voit,et al.  Hybrid Modeling in Biochemical Systems Theory by Means of Functional Petri Nets , 2009, J. Bioinform. Comput. Biol..

[63]  John E. Pearson,et al.  Microscopic Simulation of Chemical Oscillations in Homogeneous Systems , 1990 .

[64]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[65]  L. Vassilev,et al.  Small-molecule inhibitors of the p53-MDM2 interaction. , 2011, Current topics in microbiology and immunology.

[66]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[67]  Ina Koch,et al.  Model validation of biological pathways using Petri nets , 2004 .

[68]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[69]  M. di Bernardo,et al.  Comparing different ODE modelling approaches for gene regulatory networks. , 2009, Journal of theoretical biology.

[70]  H. Lin,et al.  Biological mechanisms revealed by a mathematical model for p53-Mdm2 core regulation. , 2009, IET systems biology.

[71]  Peter J. Woolf,et al.  Bayesian analysis of signaling networks governing embryonic stem cell fate decisions , 2005, Bioinform..

[72]  Sandeep Krishna,et al.  Stress-specific response of the p53-Mdm2 feedback loop , 2010, BMC Systems Biology.

[73]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[74]  Jason A. Papin,et al.  Metabolic pathways in the post-genome era. , 2003, Trends in biochemical sciences.

[75]  Michel Cabassud,et al.  Kinetic model identification and parameters estimation from TGA experiments , 2007 .

[76]  Michael Berger,et al.  Apoptosis - the p53 network , 2003, Journal of Cell Science.

[77]  Alexandru Stancu,et al.  Nonlinear System Identification Based on Internal Recurrent Neural Networks , 2009, Int. J. Neural Syst..

[78]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[79]  Yi Sun,et al.  Targeting p53 for Novel Anticancer Therapy. , 2010, Translational oncology.

[80]  Hojjat Adeli,et al.  Spiking Neural Networks , 2009, Int. J. Neural Syst..

[81]  G. Li,et al.  p53‐Dependent DNA repair and apoptosis respond differently to high‐ and low‐dose ultraviolet radiation , 1998, The British journal of dermatology.

[82]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[83]  A. Levine,et al.  p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. , 2005, Systems biology.

[84]  A. Levine,et al.  The p53 pathway: positive and negative feedback loops , 2005, Oncogene.

[85]  Sandhya Samarasinghe,et al.  Robustness of CDK2 in Triggering Cellular Senescence based on Probability of DNA‐damaged Cells Passing G1/S Checkpoint , 2011 .

[86]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[87]  A. Aderem Systems Biology: Its Practice and Challenges , 2005, Cell.

[88]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[89]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[90]  S. Elledge,et al.  DNA damage-induced activation of p53 by the checkpoint kinase Chk2. , 2000, Science.

[91]  Ana Gabriela Gallardo-Hernández,et al.  A Discrete-Time Recurrent Neurofuzzy Network for Black-Box Modeling of insulin Dynamics in Diabetic Type-1 Patients , 2010, Int. J. Neural Syst..

[92]  David P. Davis,et al.  A chemosensitization screen identifies TP53RK, a kinase that restrains apoptosis after mitotic stress. , 2010, Cancer research.

[93]  Andrej Gams,et al.  On-line frequency adaptation and movement imitation for rhythmic robotic tasks , 2011, Int. J. Robotics Res..

[94]  Alexander B Neiman,et al.  Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents. , 2007, Journal of neurophysiology.

[95]  Y. Haupt,et al.  The p53-Mdm2 loop: a critical juncture of stress response. , 2014, Sub-cellular biochemistry.

[96]  M. Oren,et al.  mdm2 expression is induced by wild type p53 activity. , 1993, The EMBO journal.

[97]  David R Bickers,et al.  CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. , 2007, The Journal of clinical investigation.

[98]  Edda Klipp,et al.  Systems Biology , 1994 .

[99]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[100]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[101]  Michael Naumann,et al.  Dynamics of p53 and NF-κB regulation in response to DNA damage and identification of target proteins suitable for therapeutic intervention , 2012, BMC Systems Biology.

[102]  Andrea Ciliberto,et al.  Steady States and Oscillations in the p53/Mdm2 Network , 2005, Cell cycle.

[103]  Samuel Bottani,et al.  Analysis of a minimal model for p53 oscillations. , 2007, Journal of theoretical biology.

[104]  Shiyun Ling,et al.  EDD Inhibits ATM-mediated Phosphorylation of p53* , 2011, The Journal of Biological Chemistry.

[105]  Peter K. Sorger,et al.  Logic-Based Models for the Analysis of Cell Signaling Networks† , 2010, Biochemistry.

[106]  G. Wahl,et al.  Regulating the p53 pathway: in vitro hypotheses, in vivo veritas , 2006, Nature Reviews Cancer.

[107]  F. Baras,et al.  Stochastic analysis of limit cycle behavior , 1997 .

[108]  Steffen Klamt,et al.  A Logical Model Provides Insights into T Cell Receptor Signaling , 2007, PLoS Comput. Biol..

[109]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[110]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[111]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[112]  D. Noble,et al.  Systems Biology: An Approach , 2010, Clinical pharmacology and therapeutics.