A dual-mode architecture for fast-switching STT-RAM

In the past, the spin-transfer torque RAM (STT-RAM) suffered from the slow write speed and the high write energy consumption. The latest progress in device engineering has dramatically reduced the write time to a few nanoseconds and hence enabled the fast-switching STT-RAM (FS-STT-RAM). However, the enhancement in write performance results in the degradation of read operations, in terms of both speed and data reliability. Our analysis shows that the read performance becomes critical. Based upon the tradeoff among the read latency, read errors, and system performance, we propose a new FS-STT-RAM architecture, which can switch between two operation modes for either high data accuracy or low power consumption with the support of operation system. In the high accuracy mode, FS-STT-RAM applies the rewrite-after-read scheme to eliminate the data disturbances induced by read current. Even so, with enhancement from shadow rewrite buffer and bit invert scheme, it gains an average 19% improvement in energy-delay-product (EDP) compared to a conventional STT-RAM. When an application can afford a very low chance of read disturbance, the proposed FS-STT-RAM can operate in the low power mode and further boost the average EDP improvement to 34%.

[1]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[2]  Mircea R. Stan,et al.  Relaxing non-volatility for fast and energy-efficient STT-RAM caches , 2011, 2011 IEEE 17th International Symposium on High Performance Computer Architecture.

[3]  Xiaoxia Wu,et al.  Power and performance of read-write aware Hybrid Caches with non-volatile memories , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[4]  S. Watts,et al.  Latest Advances and Roadmap for In-Plane and Perpendicular STT-RAM , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[5]  Hitoshi Kubota,et al.  Switching-probability distribution of spin-torque switching in MgO-based magnetic tunnel junctions , 2011 .

[6]  Toshihiro Sugii,et al.  Correlation between microstructure and electromagnetic properties in magnetic tunnel junctions with naturally oxidized MgO barrier , 2012 .

[7]  Yiran Chen,et al.  A novel architecture of the 3D stacked MRAM L2 cache for CMPs , 2009, 2009 IEEE 15th International Symposium on High Performance Computer Architecture.

[8]  Pedro López,et al.  Leakage Current Reduction in Data Caches on Embedded Systems , 2007, The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007).

[9]  Z. Diao,et al.  Comparison of Scaling of In-Plane and Perpendicular Spin Transfer Switching Technologies by Micromagnetic Simulation , 2010, IEEE Transactions on Magnetics.

[10]  Eugene John,et al.  A quasi-power-gated low-leakage stable SRAM cell , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[11]  Xiaoxia Wu,et al.  Hybrid cache architecture with disparate memory technologies , 2009, ISCA '09.

[12]  Wenqing Wu,et al.  Multi retention level STT-RAM cache designs with a dynamic refresh scheme , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[13]  Yiran Chen,et al.  A nondestructive self-reference scheme for Spin-Transfer Torque Random Access Memory (STT-RAM) , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[14]  Yiran Chen,et al.  Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[15]  Arijit Raychowdhury,et al.  Design space and scalability exploration of 1T-1STT MTJ memory arrays in the presence of variability and disturbances , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[16]  Jun Yang,et al.  Energy reduction for STT-RAM using early write termination , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[17]  Naehyuck Chang,et al.  Energy- and endurance-aware design of phase change memory caches , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[18]  Yiran Chen,et al.  Design of Last-Level On-Chip Cache Using Spin-Torque Transfer RAM (STT RAM) , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Mircea R. Stan,et al.  Delivering on the promise of universal memory for spin-transfer torque RAM (STT-RAM) , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.