Solving satisfiability problems with membrane algorithms

This paper presents the application of membrane algorithms to satisfiability problems which are well-known NP-hard combinatorial optimization problems. The membrane algorithm, called QEPS, is a combination of P system approaches and quantum-inspired evolutionary algorithms. QEPS employs the hierarchical structure of the compartments of P systems, the objects consisting of quantum-inspired bit individuals, the rules composed of quantum-inspired gate evolutionary rules and transformation/communication-like rules in P systems to specify the membrane algorithms. A large number of experiments carried out on bench satisfiability problems show that QEPS performs better than its counterpart quantum-inspired evolutionary algorithm.

[1]  Marian Gheorghe,et al.  P systems applications to systems biology , 2008, Biosyst..

[2]  Gabriel Ciobanu,et al.  Distributed Evolutionary Algorithms Inspired by Membranes in Solving Continuous Optimization Problems , 2006, Workshop on Membrane Computing.

[3]  Taishin Y. Nishida Membrane Algorithms , 2005, Workshop on Membrane Computing.

[4]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[5]  Gabriel Ciobanu Distributed algorithms over communicating membrane systems. , 2003, Bio Systems.

[6]  Gheorghe Paun P Systems with Active Membranes: Attacking NP-Complete Problems , 2001, J. Autom. Lang. Comb..

[7]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[8]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[9]  Ning Wang,et al.  An Optimization Algorithm Inspired by Membrane Computing , 2006, ICNC.

[10]  Florent Jacquemard,et al.  An Analysis of a Public Key Protocol with Membranes , 2005 .

[11]  Marian Gheorghe,et al.  A Quantum-Inspired Evolutionary Algorithm Based on P systems for Knapsack Problem , 2008, Fundam. Informaticae.

[12]  S. Forrest,et al.  Genetic Algorithms and Heuristic Search , 1995 .

[13]  Andrei Paun,et al.  On P Systems with Active Membranes , 2000, UMC.

[14]  Mario J Pérez-Jiménez,et al.  Membrane computing: brief introduction, recent results and applications. , 2006, Bio Systems.

[15]  Elena Marchiori,et al.  Evolutionary Algorithms for the Satisfiability Problem , 2002, Evolutionary Computation.

[16]  Piero P. Bonissone,et al.  Evolutionary algorithms + domain knowledge = real-world evolutionary computation , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Gheorghe Paun,et al.  Fourth Brainstorming Week on Membrane Computing , 2007, Theor. Comput. Sci..

[18]  Alberto Leporati,et al.  A Membrane Algorithm for the Min Storage Problem , 2006, Workshop on Membrane Computing.

[19]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[20]  Ilya Grigorenko,et al.  Calculation of the partition function using quantum genetic algorithms , 2002 .

[21]  Mircea Vladutiu,et al.  Implementing quantum genetic algorithms: a solution based on Grover's algorithm , 2006, CF '06.

[22]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[23]  Giandomenico Spezzano,et al.  Parallel hybrid method for SAT that couples genetic algorithms and local search , 2001, IEEE Trans. Evol. Comput..

[24]  Artiom Alhazov,et al.  Solving a PSPACE-Complete Problem by Recognizing P Systems with Restricted Active Membranes , 2003, Fundam. Informaticae.

[25]  Artiom Alhazov,et al.  Solving HPP and SAT by P Systems with Active Membranes and Separation Rules , 2006, Acta Informatica.

[26]  Ajit Narayanan,et al.  Quantum-inspired genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[27]  Huang Liang,et al.  P systems based multi-objective optimization algorithm , 2007 .

[28]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[29]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[30]  Gheorghe Paun,et al.  Bio-inspired Computing Paradigms (Natural Computing) , 2004, UPP.

[31]  P Gheorghe,et al.  Tracing Some Open Problems in Membrane Computing , 2007 .

[32]  Marian Gheorghe,et al.  A Quantum-Inspired Evolutionary Algorithm Based on P systems for a Class of Combinatorial Optimization , 2008 .