Entropic Regularization Approach for Mathematical Programs with Equilibrium Constraints

A new smoothing approach based on entropic regularization is proposed for solving a mathematical program with equilibrium constraints (MPEC). With some known smoothing properties of the entropy function and keeping real practice in mind, we reformulate an MPEC problem as a smooth nonlinear programming problem. In this way, a difficult MPEC problem becomes solvable by using available nonlinear optimization software. To support our claims, we use an online solver and test the performance of the proposed approach on a set of well-known test problems.

[1]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[2]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[3]  J. Outrata On mathematical programs with complementarity constraints , 2000 .

[4]  Terry L. Friesz,et al.  Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints , 1990, Math. Program..

[5]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[6]  Jiming Liu,et al.  On bilevel programming, Part I: General nonlinear cases , 1995, Math. Program..

[7]  P. Loridan,et al.  Regularizations for Two-Level Optimization Problems , 1992 .

[8]  Eitaro Aiyoshi,et al.  Double penalty method for bilevel optimization problems , 1992, Ann. Oper. Res..

[9]  Michel Théra,et al.  Ill-posed Variational Problems and Regularization Techniques , 1999 .

[10]  Gert-Jan de Vreede,et al.  Harnessing Intellectual Resources in a Collaborative Context to Create Value , 2002 .

[11]  J. Pang,et al.  Convergence of a Smoothing Continuation Method for Mathematical Progams with Complementarity Constraints , 1999 .

[12]  L. Qi,et al.  A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations , 1995 .

[13]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[14]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[15]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[16]  Terry L. Friesz,et al.  Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem , 1987, Transp. Sci..

[17]  E. D. Dolan,et al.  The Kestrel interface to the NEOS server. , 2001 .

[18]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[19]  Shu-Cherng Fang,et al.  Solving min-max problems and linear semi-infinite programs , 1996 .

[20]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[21]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[22]  Shu-Cherng Fang,et al.  On the entropic regularization method for solving min-max problems with applications , 1997, Math. Methods Oper. Res..

[23]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[24]  Hanif D. Sherali,et al.  A mathematical programming approach for determining oligopolistic market equilibrium , 1982, Math. Program..

[25]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[26]  Jirí V. Outrata,et al.  A numerical approach to optimization problems with variational inequality constraints , 1995, Math. Program..

[27]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[28]  篠原 正明 Shu-Cherng Fang, J.R. Rajasekera and H.S.J. Tsao著, Entropy Optimization and Mathematical Programming, Kluwer Academic Publishers, 343頁, 1997年 , 1998 .

[29]  Nanda Piersma,et al.  Airline revenue management: an overview of OR techniques 1982-2001 , 2002 .

[30]  G. Dantzig,et al.  A generalization of the linear complementarity problem , 1970 .

[31]  Peter van Baalen,et al.  European Business Schools , 2001 .

[32]  Terry L. Friesz,et al.  A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints , 1992, Transp. Sci..

[33]  D. M. Deighton,et al.  Computers in Operations Research , 1977, Aust. Comput. J..

[34]  Christian Kanzow,et al.  A continuation method for (strongly) monotone variational inequalities , 1998, Math. Program..