Lyapunov Exponents from Random Fibonacci Sequences to the Lorenz Equations
暂无分享,去创建一个
[1] J. Day,et al. Growth in Gaussian elimination , 1988 .
[2] S. Strogatz,et al. Dynamics of a large system of coupled nonlinear oscillators , 1991 .
[3] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[4] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[5] Kai Liu. Stochastic Stability of Differential Equations in Abstract Spaces , 2022 .
[6] Divakar Viswanath,et al. Random Fibonacci sequences and the number 1.13198824 , 2000, Math. Comput..
[7] A. R. Humphries,et al. Dynamical Systems And Numerical Analysis , 1996 .
[8] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[9] M. Benedicks. New developments in the ergodic theory of nonlinear dynamical systems , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[10] H. Furstenberg,et al. Products of Random Matrices , 1960 .
[11] Ulrich Parlitz,et al. Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .
[12] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[13] I. Shimada,et al. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .
[14] A. Crisanti,et al. Products of random matrices in statistical physics , 1993 .
[15] Joel E. Cohen,et al. Random matrices and their applications , 1986 .
[16] Steven A. Orszag,et al. Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .
[17] G. Letac,et al. Brocot sequences and random walks in SL(2,IR) , 1984 .
[18] O. Perron. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen , 1929 .
[19] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[20] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[21] F. Hunt,et al. On the approximation of invariant measures , 1992 .
[22] Henry D. I. Abarbanel,et al. Local Lyapunov exponents computed from observed data , 1992 .
[23] L. Pastur,et al. Wave transmittance for a thick layer of a randomly inhomogeneous medium , 1975 .
[24] L. Dieci,et al. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .
[25] Andreas Griewank,et al. Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.
[26] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[27] Edmund M. Clarke,et al. Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .
[28] A. Carverhill. Furstenberg's theorem for nonlinear stochastic systems , 1987 .
[29] J. Gallas,et al. Structure of the parameter space of the Hénon map. , 1993, Physical review letters.
[30] Ping Tak Peter Tang. Table-driven implementation of the logarithm function in IEEE floating-point arithmetic , 1990, TOMS.
[31] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[32] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[33] D. Broomhead,et al. Robust estimation of tangent maps and Liapunov spectra , 1996 .
[34] Henry D. I. Abarbanel,et al. Variation of Lyapunov exponents on a strange attractor , 1991 .
[35] Marc A. Berger,et al. An Introduction to Probability and Stochastic Processes , 1992 .
[36] Emile Le Page,et al. Théorèmes limites pour les produits de matrices aléatoires , 1982 .
[37] T. Pitcher,et al. The dimension of some sets defined in terms of f-expansions , 1966 .
[38] L. Foster. Gaussian Elimination with Partial Pivoting Can Fail in Practice , 1994, SIAM J. Matrix Anal. Appl..
[39] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[40] H. Furstenberg. Noncommuting random products , 1963 .
[41] Charles M. Grinstead,et al. Introduction to probability , 1999, Statistics for the Behavioural Sciences.
[42] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[43] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip , 1979 .
[44] Roberto Conti,et al. Non-linear differential equations , 1966 .
[45] James A. Yorke,et al. Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .
[46] R. Bellman. Limit theorems for non-commutative operations. I. , 1954 .
[47] R. Lima,et al. Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.
[48] A. K. Gupta,et al. Distribution of the Quotient of Two Independent Hotelling's T2-Variates , 1975 .
[49] L. Arnold,et al. Lyapunov exponents of linear stochastic systems , 1986 .
[50] J. Greene,et al. The calculation of Lyapunov spectra , 1987 .
[51] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[52] Ulrich Parlitz,et al. Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .
[53] D. Ruelle,et al. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .
[54] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[55] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[56] A. Liapounoff,et al. Probleme Generale de la Stabilite du Mouvement , 1948 .
[57] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[58] Jason A. C. Gallas,et al. Lyapunov exponents for a Duffing oscillator , 1995 .
[59] L. Trefethen,et al. Condition Numbers of Random Triangular Matrices , 1996, SIAM J. Matrix Anal. Appl..
[60] L. Trefethen,et al. Average-case stability of Gaussian elimination , 1990 .
[61] G. Sussman,et al. Chaotic Evolution of the Solar System , 1992, Science.
[62] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[63] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[64] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[65] F. Ledrappier. Quelques proprietes des exposants caracteristiques , 1984 .
[66] J. H. van Lint,et al. Functions of one complex variable II , 1997 .
[67] Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications , 1989 .
[68] J. Conway,et al. Functions of a Complex Variable , 1964 .
[69] K. Loparo,et al. Almost sure instability of a class of linear stochastic systems with jump process coefficients , 1986 .
[70] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[71] Y. Kuramoto,et al. Anomalous Lyapunov spectrum in globally coupled oscillators , 1995 .
[72] Stephen J. Wright. A Collection of Problems for Which Gaussian Elimination with Partial Pivoting is Unstable , 1993, SIAM J. Sci. Comput..
[73] Crutchfield,et al. Are attractors relevant to turbulence? , 1988, Physical review letters.
[74] Leonard A. Smith. Intrinsic limits on dimension calculations , 1988 .
[75] D. Ruelle,et al. The Ergodic Theory of Axiom A Flows. , 1975 .
[76] Eckmann,et al. Liapunov exponents from time series. , 1986, Physical review. A, General physics.
[77] P. Bougerol,et al. Products of Random Matrices with Applications to Schrödinger Operators , 1985 .
[78] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[79] P. Grassberger,et al. Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .
[80] Henry D. I. Abarbanel,et al. Analysis of Observed Chaotic Data , 1995 .
[81] R. Russell,et al. On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .
[82] Yuval Peres,et al. Analytic dependence of Lyapunov exponents on transition probabilities , 1991 .
[83] K. Appel,et al. The Solution of the Four-Color-Map Problem , 1977 .
[84] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[85] J. Kingman. Subadditive Ergodic Theory , 1973 .
[86] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[87] P. Billingsley,et al. Probability and Measure , 1980 .
[88] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[89] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[90] Tong Zhang,et al. Densities of Self-Similar Measures on the Line , 1995, Exp. Math..
[91] Andrea Milani,et al. An example of stable chaos in the Solar System , 1992, Nature.