Lyapunov Exponents from Random Fibonacci Sequences to the Lorenz Equations

Lyapunov exponents give a way to capture the central features of chaos and of stability in both deterministic and stochastic systems using just a few real numbers. However, exact analytic determination of Lyapunov exponents is rarely possible, and as we will show, even an accurate numerical computation is not a trivial task. One of the principal results of this thesis is about random Fibonacci sequences. Random Fibonacci sequences are defined by $t\sb1=t\sb2=1$ and $t\sb{n}={\pm}t\sb{n-1}\pm t\sb{n-2}$ for $n>2,$ where each $\pm$ sign is independent and either + or $-$ with probability 1/2. Using Stern-Brocot sequences, we prove that$${\root n\of{\vert t\sb{n}\vert}}\to1.13198824\...\ {\rm as}\ n\to\infty$$with probability 1. Other contributions of this thesis include formulas for condition numbers of random triangular matrices and an accurate computation of the Lyapunov exponents of the Lorenz equations.

[1]  J. Day,et al.  Growth in Gaussian elimination , 1988 .

[2]  S. Strogatz,et al.  Dynamics of a large system of coupled nonlinear oscillators , 1991 .

[3]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[4]  James Hardy Wilkinson,et al.  Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.

[5]  Kai Liu Stochastic Stability of Differential Equations in Abstract Spaces , 2022 .

[6]  Divakar Viswanath,et al.  Random Fibonacci sequences and the number 1.13198824 , 2000, Math. Comput..

[7]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[8]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[9]  M. Benedicks New developments in the ergodic theory of nonlinear dynamical systems , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[11]  Ulrich Parlitz,et al.  Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .

[12]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[13]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[14]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[15]  Joel E. Cohen,et al.  Random matrices and their applications , 1986 .

[16]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[17]  G. Letac,et al.  Brocot sequences and random walks in SL(2,IR) , 1984 .

[18]  O. Perron Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen , 1929 .

[19]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[20]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[21]  F. Hunt,et al.  On the approximation of invariant measures , 1992 .

[22]  Henry D. I. Abarbanel,et al.  Local Lyapunov exponents computed from observed data , 1992 .

[23]  L. Pastur,et al.  Wave transmittance for a thick layer of a randomly inhomogeneous medium , 1975 .

[24]  L. Dieci,et al.  Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .

[25]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[26]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[27]  Edmund M. Clarke,et al.  Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .

[28]  A. Carverhill Furstenberg's theorem for nonlinear stochastic systems , 1987 .

[29]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[30]  Ping Tak Peter Tang Table-driven implementation of the logarithm function in IEEE floating-point arithmetic , 1990, TOMS.

[31]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[32]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[33]  D. Broomhead,et al.  Robust estimation of tangent maps and Liapunov spectra , 1996 .

[34]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[35]  Marc A. Berger,et al.  An Introduction to Probability and Stochastic Processes , 1992 .

[36]  Emile Le Page,et al.  Théorèmes limites pour les produits de matrices aléatoires , 1982 .

[37]  T. Pitcher,et al.  The dimension of some sets defined in terms of f-expansions , 1966 .

[38]  L. Foster Gaussian Elimination with Partial Pivoting Can Fail in Practice , 1994, SIAM J. Matrix Anal. Appl..

[39]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[40]  H. Furstenberg Noncommuting random products , 1963 .

[41]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[42]  J. W. Silverstein The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .

[43]  Richard P. Brent,et al.  On the zeros of the Riemann zeta function in the critical strip , 1979 .

[44]  Roberto Conti,et al.  Non-linear differential equations , 1966 .

[45]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[46]  R. Bellman Limit theorems for non-commutative operations. I. , 1954 .

[47]  R. Lima,et al.  Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.

[48]  A. K. Gupta,et al.  Distribution of the Quotient of Two Independent Hotelling's T2-Variates , 1975 .

[49]  L. Arnold,et al.  Lyapunov exponents of linear stochastic systems , 1986 .

[50]  J. Greene,et al.  The calculation of Lyapunov spectra , 1987 .

[51]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[52]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[53]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[54]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[55]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[56]  A. Liapounoff,et al.  Probleme Generale de la Stabilite du Mouvement , 1948 .

[57]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[58]  Jason A. C. Gallas,et al.  Lyapunov exponents for a Duffing oscillator , 1995 .

[59]  L. Trefethen,et al.  Condition Numbers of Random Triangular Matrices , 1996, SIAM J. Matrix Anal. Appl..

[60]  L. Trefethen,et al.  Average-case stability of Gaussian elimination , 1990 .

[61]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[62]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[63]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[64]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[65]  F. Ledrappier Quelques proprietes des exposants caracteristiques , 1984 .

[66]  J. H. van Lint,et al.  Functions of one complex variable II , 1997 .

[67]  Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications , 1989 .

[68]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[69]  K. Loparo,et al.  Almost sure instability of a class of linear stochastic systems with jump process coefficients , 1986 .

[70]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[71]  Y. Kuramoto,et al.  Anomalous Lyapunov spectrum in globally coupled oscillators , 1995 .

[72]  Stephen J. Wright A Collection of Problems for Which Gaussian Elimination with Partial Pivoting is Unstable , 1993, SIAM J. Sci. Comput..

[73]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[74]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[75]  D. Ruelle,et al.  The Ergodic Theory of Axiom A Flows. , 1975 .

[76]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[77]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[78]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[79]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[80]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[81]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[82]  Yuval Peres,et al.  Analytic dependence of Lyapunov exponents on transition probabilities , 1991 .

[83]  K. Appel,et al.  The Solution of the Four-Color-Map Problem , 1977 .

[84]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[85]  J. Kingman Subadditive Ergodic Theory , 1973 .

[86]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[87]  P. Billingsley,et al.  Probability and Measure , 1980 .

[88]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[89]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[90]  Tong Zhang,et al.  Densities of Self-Similar Measures on the Line , 1995, Exp. Math..

[91]  Andrea Milani,et al.  An example of stable chaos in the Solar System , 1992, Nature.