Kernelized Evolutionary Distance Metric Learning for Semi-Supervised Clustering

Wasin Kalintha, Satoshi Ono, Masayuki Numao, Ken-ichi Fukui Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka Suita Osaka 565-0871 Japan, wasin@ai.sanken.osaka-u.ac.jp, +81-6-6879-8426 Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima-city 890-0065, Japan, ono@ibe.kagoshima-u.ac.jp The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka Ibaraki, Osaka 567-0047 Japan, {surname}@ai.sanken.osaka-u.ac.jp

[1]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[2]  Bruno M. Nogueira,et al.  Integrating distance metric learning and cluster-level constraints in semi-supervised clustering , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[3]  Masayuki Numao,et al.  Neighborhood-Based Smoothing of External Cluster Validity Measures , 2012, PAKDD.

[4]  Frédéric Alexandre,et al.  Self-organizing Map Initialization , 2005, ICANN.

[5]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[6]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[7]  Tomer Hertz,et al.  Learning Distance Functions using Equivalence Relations , 2003, ICML.

[8]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[9]  Dacheng Tao,et al.  Learning a Distance Metric by Empirical Loss Minimization , 2011, IJCAI.

[10]  M. Numao,et al.  Integrating Class Information and Features in Cluster Analysis Based on Evolutionary Distance Metric Learning , 2017 .

[11]  Hiroaki Satoh,et al.  Minimal generation gap model for GAs considering both exploration and exploitation , 1996 .

[12]  Peng Li,et al.  Distance Metric Learning with Eigenvalue Optimization , 2012, J. Mach. Learn. Res..

[13]  Yi Liu,et al.  An Efficient Algorithm for Local Distance Metric Learning , 2006, AAAI.

[14]  Mahdieh Soleymani Baghshah,et al.  Kernel-based metric learning for semi-supervised clustering , 2010, Neurocomputing.

[15]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[16]  Ian Davidson,et al.  Measuring Constraint-Set Utility for Partitional Clustering Algorithms , 2006, PKDD.

[17]  Ioannis A. Kakadiaris,et al.  An Overview and Empirical Comparison of Distance Metric Learning Methods , 2017, IEEE Transactions on Cybernetics.

[18]  Eric Bair,et al.  Semi‐supervised clustering methods , 2013, Wiley interdisciplinary reviews. Computational statistics.

[19]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[20]  Hong Chang,et al.  A Kernel Approach for Semisupervised Metric Learning , 2007, IEEE Transactions on Neural Networks.

[21]  Masayuki Numao,et al.  Evolutionary Distance Metric Learning Approach to Semi-supervised Clustering with Neighbor Relations , 2013, 2013 IEEE 25th International Conference on Tools with Artificial Intelligence.

[22]  Vincent Ng,et al.  Which Clustering Do You Want? Inducing Your Ideal Clustering with Minimal Feedback , 2010, J. Artif. Intell. Res..

[23]  Xiaoguang Rui,et al.  A Distributed Approach Toward Discriminative Distance Metric Learning , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[24]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[25]  Samuel Kaski,et al.  Principle of Learning Metrics for Exploratory Data Analysis , 2004, J. VLSI Signal Process..

[26]  Samy Bengio,et al.  Large Scale Online Learning of Image Similarity Through Ranking , 2009, J. Mach. Learn. Res..

[27]  Fei Wang,et al.  Survey on distance metric learning and dimensionality reduction in data mining , 2014, Data Mining and Knowledge Discovery.

[28]  Kihyuk Sohn,et al.  Improved Deep Metric Learning with Multi-class N-pair Loss Objective , 2016, NIPS.

[29]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[30]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  Hongyuan Zha,et al.  Learning distance metric for regression by semidefinite programming with application to human age estimation , 2009, ACM Multimedia.

[33]  Silvio Savarese,et al.  Deep Metric Learning via Lifted Structured Feature Embedding , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Wenlin Chen,et al.  Deep Metric Learning with Data Summarization , 2016, ECML/PKDD.

[35]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[36]  Changsheng Li,et al.  Ordinal Distance Metric Learning for Image Ranking , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[37]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[38]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[39]  Zhijian Wu,et al.  Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems , 2011, Soft Comput..

[40]  Tomer Hertz,et al.  Boosting margin based distance functions for clustering , 2004, ICML.

[41]  Stephen Tyree,et al.  Non-linear Metric Learning , 2012, NIPS.

[42]  Qi Wang,et al.  Locality constraint distance metric learning for traffic congestion detection , 2018, Pattern Recognit..

[43]  Masayuki Numao,et al.  Reinforcement learning based distance metric filtering approach in clustering , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[44]  Zhijian Wu,et al.  Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems , 2013, J. Parallel Distributed Comput..

[45]  Zhijie Wen,et al.  Manifold Preserving: An Intrinsic Approach for Semisupervised Distance Metric Learning , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[46]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[47]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[48]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[49]  Kiri Wagstaff,et al.  Value, Cost, and Sharing: Open Issues in Constrained Clustering , 2006, KDID.

[50]  Jian Pei,et al.  Distance metric learning using dropout: a structured regularization approach , 2014, KDD.

[51]  Jouni Lampinen,et al.  Optimized distance metrics for differential evolution based nearest prototype classifier , 2012, Expert Syst. Appl..

[52]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[53]  Masayuki Numao,et al.  Cluster Analysis of Face Images and Literature Data by Evolutionary Distance Metric Learning , 2015, SGAI Conf..

[54]  Boonserm Kijsirikul,et al.  A new kernelization framework for Mahalanobis distance learning algorithms , 2010, Neurocomputing.

[55]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .