System identification for achieving robust performance

The performance of robust controllers hinges on the underlying model set. The aim of the present paper is to develop a system identification procedure that enables the design of a controller that achieves optimal robust performance. Hereto, the complex interrelation between system identification and robust control is thoroughly analyzed and novel connections are established between (i) control-relevant and coprime factor identification and (ii) model uncertainty size and the control criterion. The key technical results include new robust-control-relevant and (W"u,W"y)-normalized coprime factorizations. The results enable the identification of multivariable model sets that achieve high robust performance in a subsequent robust control synthesis. Superiority of the proposed results compared to existing approaches is shown by means of an example.

[1]  B. Pasik-Duncan Control-oriented system identification: An H∞ approach , 2002 .

[2]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[3]  Graham C. Goodwin,et al.  Estimation of model quality , 1994, Autom..

[4]  Ruud J. P. Schrama Accurate identification for control: the necessity of an iterative scheme , 1992 .

[5]  P. Khargonekar Control System Synthesis: A Factorization Approach (M. Vidyasagar) , 1987 .

[6]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[7]  Brian D. O. Anderson,et al.  Model validation for control and controller validation in a prediction error identification framework - Part I: theory , 2003, Autom..

[8]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[9]  P. V. D. Hof,et al.  Identification of probabilistic system uncertainty regions by explicit evaluation of bias and variance errors , 1997, IEEE Trans. Autom. Control..

[10]  Michel Gevers,et al.  Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[11]  G. Vinnicombe,et al.  Closed-loop time-domain model validation in the nu-gap metric , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[12]  Marc M. J. van de Wal,et al.  Design framework for high-performance optimal sampled-data control with application to a wafer stage , 2007, Int. J. Control.

[13]  Tong Zhou,et al.  Identification of normalized coprime factors through constrained curve fitting , 2004, Autom..

[14]  Pedro Albertos,et al.  Iterative Identification and Control , 2002, Springer London.

[15]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[16]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[17]  Michel Gevers,et al.  Towards a Joint Design of Identification and Control , 1993 .

[18]  T. Oomen,et al.  Robust-control-relevant coprime factor identification: A numerically reliable frequency domain approach , 2008, 2008 American Control Conference.

[19]  P. V. D. Hof,et al.  Suboptimal feedback control by a scheme of iterative identification and control design , 1997 .

[20]  Raymond A. de Callafon,et al.  Multivariable feedback relevant system identification of a wafer stepper system , 2001, IEEE Trans. Control. Syst. Technol..

[21]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[22]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[23]  Jie Chen,et al.  On computational complexity of invalidating structured uncertainty models 1 1 This research is suppo , 1998 .

[24]  Christopher Edwards,et al.  Dynamic Sliding Mode Control for a Class of Systems with Mismatched Uncertainty , 2005, Eur. J. Control.

[25]  Sergio Bittanti,et al.  Iterative robust control: Speeding up improvement through iterations , 2010, Syst. Control. Lett..

[26]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[27]  Graham C. Goodwin,et al.  Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..

[28]  P. V. D. Hof,et al.  A unified approach to stability robustness for uncertainty descriptions based on fractional model representations , 1996, IEEE Trans. Autom. Control..

[29]  Harry L. Trentelman,et al.  Essays on control : perspectives in the theory and its applications , 1993 .

[30]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[31]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[32]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[33]  Paresh Date,et al.  On validating closed-loop behaviour from noisy frequency-response measurements , 2005, Syst. Control. Lett..

[34]  Stephen P. Boyd,et al.  Computing optimal uncertainty models from frequency domain data , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  Glenn Vinnicombe,et al.  Algorithms for worst case identification in I and in the nu-gap metric , 2004, Autom..

[36]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[37]  Guoxiang Gu,et al.  Modeling of normalized coprime factors with ν-metric uncertainty , 1999, IEEE Trans. Autom. Control..

[38]  G. Papageorgiou,et al.  Robust stability and performance analysis for uncertain linear systems—The distance measure approach , 2012 .

[39]  Raymond A. de Callafon,et al.  Identification of Normalised Coprime Plant Factors from Closed-loop Experimental Data , 1995, Eur. J. Control.

[40]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[41]  George Papageorgiou,et al.  Distance Measures for Uncertain Linear Systems: A General Theory , 2009, IEEE Transactions on Automatic Control.

[42]  Cheng-Chih Chu,et al.  On Discrete Inner-Outer and Spectral Factorizations , 1988, 1988 American Control Conference.

[43]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[44]  Sippe G. Douma,et al.  Relations between uncertainty structures in identification for robust control , 2005, Autom..