Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity
暂无分享,去创建一个
[1] William Matthews,et al. Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.
[2] Igor Devetak,et al. Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.
[3] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[4] Rahul Jain,et al. QIP = PSPACE , 2011, JACM.
[5] Naresh Sharma,et al. On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.
[6] E. Lieb,et al. Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .
[7] Anna Jencova. A relation between completely bounded norms and conjugate channels , 2006 .
[8] Noam Nisan,et al. Quantum circuits with mixed states , 1998, STOC '98.
[9] A. Holevo. On entanglement-assisted classical capacity , 2001, quant-ph/0106075.
[10] Jürg Wullschleger,et al. Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.
[11] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[12] Anna Jenčcová,et al. A Relation Between Completely Bounded Norms and Conjugate Channels , 2006 .
[13] Naresh Sharma,et al. Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.
[14] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[15] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[16] Suguru Arimoto,et al. On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[17] I. Devetak,et al. Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.
[18] Andreas J. Winter,et al. The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.
[19] S. Wehner,et al. A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.
[20] N. Datta,et al. A limit of the quantum Rényi divergence , 2013, 1308.5961.
[21] Bill Rosgen,et al. On the hardness of distinguishing mixed-state quantum computations , 2004, 20th Annual IEEE Conference on Computational Complexity (CCC'05).
[22] K. Audenaert,et al. Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.
[23] Masahito Hayashi. Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.
[24] А Е Китаев,et al. Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .
[25] M. Nussbaum,et al. Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.
[26] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[27] Salman Beigi,et al. Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.
[28] M. Sion. On general minimax theorems , 1958 .
[29] Daniel Gooch,et al. Communications of the ACM , 2011, XRDS.
[30] H.,et al. Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture , 2022 .
[31] Garry Bowen. Quantum feedback channels , 2004, IEEE Transactions on Information Theory.
[32] E. Carlen. TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .
[33] Mark M. Wilde,et al. From Classical to Quantum Shannon Theory , 2011, ArXiv.
[34] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[35] Mark M. Wilde,et al. Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.
[36] Andreas J. Winter,et al. “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.
[37] Rahul Jain,et al. Two-Message Quantum Interactive Proofs Are in PSPACE , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[38] E. Lieb,et al. A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity , 2007, 0710.4167.
[39] Massimiliano F. Sacchi,et al. Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .
[40] H. Nagaoka. The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.
[41] Elliott H. Lieb,et al. Monotonicity of a relative Rényi entropy , 2013, ArXiv.
[42] Igor Devetak,et al. Correcting Quantum Errors with Entanglement , 2006, Science.
[43] Ashish V. Thapliyal,et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.
[44] M. Nussbaum,et al. THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.
[45] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[46] M. Junge,et al. Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.
[47] Li-Yi Hsu,et al. High Performance Entanglement-Assisted Quantum LDPC Codes Need Little Entanglement , 2009, IEEE Transactions on Information Theory.
[48] Zunaira Babar,et al. Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.
[49] N. Langford,et al. Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.
[50] Milán Mosonyi,et al. On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.
[51] Milán Mosonyi,et al. Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.
[52] John Watrous,et al. Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..
[53] Jeffrey H. Shapiro,et al. Reverse Coherent Information , 2009 .
[54] S. Verdú,et al. Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[55] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.