Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity

The fully quantum reverse Shannon theorem establishes the optimal rate of noiseless classical communication required for simulating the action of many instances of a noisy quantum channel on an arbitrary input state, while also allowing for an arbitrary amount of shared entanglement of an arbitrary form. Turning this theorem around establishes a strong converse for the entanglement-assisted classical capacity of any quantum channel. This paper proves the strong converse for entanglement-assisted capacity by a completely different approach and identifies a bound on the strong converse exponent for this task. Namely, we exploit the recent entanglement-assisted “meta-converse” theorem of Matthews and Wehner, several properties of the recently established sandwiched Rényi relative entropy (also referred to as the quantum Rényi divergence), and the multiplicativity of completely bounded p-norms due to Devetak et al. The proof here demonstrates the extent to which the Arimoto approach can be helpful in proving strong converse theorems, it provides an operational relevance for the multiplicativity result of Devetak et al., and it adds to the growing body of evidence that the sandwiched Rényi relative entropy is the correct quantum generalization of the classical concept for all α > 1.

[1]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[2]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[3]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[4]  Rahul Jain,et al.  QIP = PSPACE , 2011, JACM.

[5]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[6]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[7]  Anna Jencova A relation between completely bounded norms and conjugate channels , 2006 .

[8]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[9]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[10]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[11]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[12]  Anna Jenčcová,et al.  A Relation Between Completely Bounded Norms and Conjugate Channels , 2006 .

[13]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[16]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[17]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[18]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[19]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[20]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[21]  Bill Rosgen,et al.  On the hardness of distinguishing mixed-state quantum computations , 2004, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[22]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[23]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[24]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[25]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[26]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[27]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[28]  M. Sion On general minimax theorems , 1958 .

[29]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[30]  H.,et al.  Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture , 2022 .

[31]  Garry Bowen Quantum feedback channels , 2004, IEEE Transactions on Information Theory.

[32]  E. Carlen TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .

[33]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[34]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[35]  Mark M. Wilde,et al.  Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.

[36]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[37]  Rahul Jain,et al.  Two-Message Quantum Interactive Proofs Are in PSPACE , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[38]  E. Lieb,et al.  A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity , 2007, 0710.4167.

[39]  Massimiliano F. Sacchi,et al.  Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .

[40]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[41]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[42]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[43]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[44]  M. Nussbaum,et al.  THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.

[45]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[46]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[47]  Li-Yi Hsu,et al.  High Performance Entanglement-Assisted Quantum LDPC Codes Need Little Entanglement , 2009, IEEE Transactions on Information Theory.

[48]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[49]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[50]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[51]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[52]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[53]  Jeffrey H. Shapiro,et al.  Reverse Coherent Information , 2009 .

[54]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[55]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.