Multiobjective filtering design

Motivated by the development of a time domain game approach for mixed /spl Hscr//sub 2///spl Hscr//sub /spl infin// characterization, the multiobjective filtering design problem is formulated and solved in both finite and infinite time domains, by combining the constrained optimization approach and the /spl Hscr//sub /spl infin// optimization approach. The resulting filters possess desired robust performance in a white noise environment. It is shown that the design can be done through solving a set of coupled Riccati differential or algebraic equations.

[1]  Wassim Generalized Riccati equations for the full-and reduced-order mixed-norm Hz / H standard problem * , 2022 .

[2]  Carsten W. Scherer,et al.  Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .

[3]  B. Anderson,et al.  A Nash game approach to mixed H/sub 2//H/sub /spl infin// control , 1994 .

[4]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[5]  S. Banda,et al.  Necessary and sufficient conditions for mixed H/sub 2/ and H/sub infinity / optimal control , 1992 .

[6]  Pramod P. Khargonekar,et al.  Mixed H2/H∞ filtering , 1996 .

[7]  D. Mustafa,et al.  Relations between maximum-entropy/H8 control and combined H8/LQG control , 1989 .

[8]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[9]  D. Bernstein,et al.  Generalized Riccati equations for the full- and reduced-order mixed-norm H 2 / H ∞ , 1990 .

[10]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[11]  D. Bernstein,et al.  Mixed-norm H 2 /H ∞ regulation and estimation: the discrete-time case , 1991 .

[12]  D. Bernstein,et al.  Mixed-norm H2/H∞ regulation and estimation: the discrete-time case , 1991, 1991 American Control Conference.

[13]  Gilead Tadmor,et al.  Worst-case design in the time domain: The maximum principle and the standardH∞ problem , 1990, Math. Control. Signals Syst..

[14]  Yasumasa Fujisaki,et al.  A Linear Matrix Inequality Approach to Mixed H 2 / H ∞ Control , 1996 .

[15]  Keith Glover,et al.  Derivation of the maximum entropy H ∞-controller and a state-space formula for its entropy , 1989 .

[16]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. I. Robust performance analysis , 1994 .

[17]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. II. Optimal control , 1994 .

[18]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[19]  B. de Jager,et al.  Multiobjective control: an overview , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  B. Anderson,et al.  A Nash game approach to mixed H2/H∞ control , 1994, IEEE Transactions on Automatic Control.

[21]  M Maarten Steinbuch,et al.  Robust Performance in H2/H, Optimal Control , 1991 .

[22]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[23]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[24]  Pramod P. Khargonekar,et al.  H2-optimal control with an H∞-constraint The state feedback case , 1991, Autom..

[25]  A. Stoorvogel The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..

[26]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .