Integrating Anatomy and Physiology of the Primary Visual Pathway: From LGN to Cortex

This chapter deals with the structure and function of the visual thalamus (lateral geniculate nucleus, LGN) and the primary visual cortex and aims to put this system into a computational perspective. We start with an overview of the basic structures of the primary visual pathway and the terminology used. Next, the organization of the LGN and its main functions are described: receptive field structure of LGN cells, excitatory and inhibitory influences, contrast gain- control, spatial summation, temporal structure of activity and influence of extra-retinal inputs. The section closes with models on three functional aspects of the LGN: 1) Switching between burst firing and tonic transmission modes of LGN cells, 2) Control of LGN function during the sleep-wake cycle, and 3) Involvement of LGN in gating visual signals. The section on the visual cortex starts with details of its morphological organisation: cortical layers, cell types, columnar structure and horizontal connections. This is followed by a description of the basic response characteristics of neurons, the organisation of receptive fields and their dynamic behavior. Here, mechanisms of establishing cortical orientation selectivity are considered in detail. Next, we focus on functional maps, e.g. distribution of orientation preferences of cells. The chapter closes with a section on basic models of the primary visual cortex, concerning: 1) Temporal firing patterns of neuronal assemblies, i.e. oscillations and synchronization, 2) Cortical cell characteristics, e.g. orientation specificity, and 3) Formation of functional maps, e.g. orientation map.

[1]  Trichur Raman Vidyasagar,et al.  A linear model fails to predict orientation selectivity of cells in the cat visual cortex. , 1996, The Journal of physiology.

[2]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[3]  L. Optican,et al.  Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response. , 1991, Journal of neurophysiology.

[4]  Keiji Tanaka Organization of geniculate inputs to visual cortical cells in the cat , 1985, Vision Research.

[5]  K. Funke,et al.  On the significance of temporally structured activity in the dorsal lateral geniculate nucleus (LGN) , 1997, Progress in Neurobiology.

[6]  P. Somogyi,et al.  Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat , 1990, The European journal of neuroscience.

[7]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[8]  Karrie R. Jones,et al.  NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  D N Mastronarde,et al.  Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs , 1992, Visual Neuroscience.

[10]  O. Creutzfeldt,et al.  Significance of intracortical inhibition in the visual cortex. , 1972, Nature: New biology.

[11]  E. Puré,et al.  Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons. , 1995, Science.

[12]  T. Tsumoto,et al.  Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition , 1979, Experimental Brain Research.

[13]  W. Singer,et al.  The pattern of ocular dominance columns in flat-mounts of the cat visual cortex , 2004, Experimental Brain Research.

[14]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[15]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  The shift-effect in the cat's lateral geniculate neurons , 1974, Experimental Brain Research.

[17]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[18]  M. Steriade Alertness, Quiet Sleep, Dreaming , 1991 .

[19]  Postsynaptic potentials in cat visual cortex: dependence on polarization , 1992, Neuroreport.

[20]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[21]  O. D. Creutzfeldt,et al.  Dark adaptation and receptive field organisation of cells in the cat lateral geniculate nucleus , 1977, Experimental Brain Research.

[22]  F. Ervin,et al.  Quantitative variation in striate receptive fields of cats as a function of light and dark adaptation , 2004, Experimental Brain Research.

[23]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[24]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[26]  W. M. White Best friend hides deep secret , 1996, Nature.

[27]  A. M. Sillito,et al.  Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus , 1993, Experimental Brain Research.

[28]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[30]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[31]  Dan E. Nielsen A functional model of the wiring of the simple cells of visual cortex , 1983, Biological Cybernetics.

[32]  Trichur Raman Vidyasagar,et al.  Multiple mechanisms underlying the orientation selectivity of visual cortical neurones , 1996, Trends in Neurosciences.

[33]  K Suder,et al.  The Control of Low-Level Information Flow in the Visual System , 2000, Reviews in the neurosciences.

[34]  P. Heggelund,et al.  Response to rates of luminance change of sustained and transient cells in the cat lateral geniculate nucleus and optic tract , 2004, Experimental Brain Research.

[35]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[36]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[37]  L. Heimer,et al.  Neuroanatomical Tract-Tracing Methods , 1981, Springer US.

[38]  W. Singer,et al.  Topographic relations between ocular dominance and orientation columns in the cat striate cortex , 1988, Experimental Brain Research.

[39]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[40]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[42]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[43]  J. Rinzel,et al.  A model of the T-type calcium current and the low-threshold spike in thalamic neurons. , 1991, Journal of neurophysiology.

[44]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on orientation tuning , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  C. Koch,et al.  The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus , 2004, Experimental Brain Research.

[46]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[47]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[48]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[49]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[50]  M. Steriade Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. , 1997, Cerebral cortex.

[51]  M. Stryker,et al.  Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. , 1997, Journal of neurophysiology.

[52]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[53]  J. Hablitz,et al.  EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. , 1989, Journal of neurophysiology.

[54]  Trichur Raman Vidyasagar Pattern adaptation in cat visual cortex is a co-operative phenomenon , 1990, Neuroscience.

[55]  Florentin Wörgötter,et al.  Comparing Different Modeling Approaches of Visual Cortical Cell Characteristics , 1999 .

[56]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[57]  Peter H. Schiller,et al.  The ON and OFF channels of the visual system , 1992, Trends in Neurosciences.

[58]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[59]  Barry J. Richmond,et al.  Information flow and temporal coding in primate pattern vision , 1995, Journal of Computational Neuroscience.

[60]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[61]  M. Deschenes,et al.  The thalamus as a neuronal oscillator , 1984, Brain Research Reviews.

[62]  N. A. Lazareva,et al.  Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition , 1998, Neuroscience.

[63]  G. Henry,et al.  Ordinal position of neurons in cat striate cortex. , 1979, Journal of neurophysiology.

[64]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[65]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[66]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[67]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[68]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[69]  B. B. Lee,et al.  Responses of cells in the cat lateral geniculate nucleus to moving stimuli at various levels of light and dark adaptation , 1977, Experimental Brain Research.

[70]  F. Lo,et al.  Feedback inhibition in the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[71]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[72]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[73]  M. Cynader,et al.  Surface organization of orientation and direction selectivity in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  Shevelev Ia,et al.  Complete reorganization of the detector properties of the cat visual cortex neurons in relation to adaptation conditions , 1974 .

[75]  A. Sillito,et al.  Spatial frequency tuning of orientation‐discontinuity‐sensitive corticofugal feedback to the cat lateral geniculate nucleus. , 1996, The Journal of physiology.

[76]  H. Wässle,et al.  Response latency of brisk‐sustained (X) and brisk‐transient (Y) cells in the cat retina , 1982, The Journal of physiology.

[77]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[78]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[79]  M. Volgushev,et al.  Dynamics of responses of V1 neurons evoked by stimulation of different zones of receptive field , 1992, Neuroscience.

[80]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[81]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  M. Ito,et al.  Functional synaptic organization of primary visual cortex neurones in the cat , 2004, Experimental Brain Research.

[83]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  B. R. Payne,et al.  Organization of direction preferences in cat visual cortex , 1981, Brain Research.

[85]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[86]  A. Vendrik,et al.  Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness , 2004, Experimental Brain Research.

[87]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[88]  P. Somogyi,et al.  Immunocytochemistry and Synaptic Relationships of Physiologically Characterized HRP-Filled Neurons , 1989 .

[89]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[90]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[91]  Trichur Raman Vidyasagar,et al.  A model of striate response properties based on geniculate anisotropies , 2004, Biological Cybernetics.

[92]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[93]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[94]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[95]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[97]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[98]  O. D. Creutzfeldt,et al.  Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat , 1978, Experimental Brain Research.

[99]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[100]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[101]  R. R. Sturrock,et al.  Cerebral Cortex, vol 1. Cellular Components of the Cerebral Cortex , 1985, Neurology.

[102]  John P. Miller,et al.  Temporal encoding in nervous systems: A rigorous definition , 1995, Journal of Computational Neuroscience.

[103]  D. Prince,et al.  Sodium channels in dendrites of rat cortical pyramidal neurons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[104]  D. Hubel,et al.  Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique , 1977, Nature.

[105]  H. Tamura,et al.  Inhibition contributes to orientation selectivity in visual cortex of cat , 1988, Nature.

[106]  R. Freeman,et al.  A comparison of inhibition in orientation and spatial frequency selectivity of cat visual cortex , 1986, Nature.

[107]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[108]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[109]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[110]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[111]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[112]  Misha Mahowald,et al.  The Role of Recurrent Excitation in Neocortical Circuits , 1999 .

[113]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[114]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters. , 1991, Journal of neurophysiology.

[116]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[117]  P. Gaudiano Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing , 1994, Vision Research.

[118]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[119]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[120]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[121]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[122]  J Bullier,et al.  Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. , 1979, Journal of neurophysiology.

[123]  F. Wörgötter,et al.  Topographical Aspects of Intracortical Excitation and Inhibition Contributing to Orientation Specificity in Area 17 of the Cat Visual Cortex , 1991, The European journal of neuroscience.

[124]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[125]  O. Creutzfeldt,et al.  An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network , 2004, Experimental Brain Research.

[126]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. , 1991, Journal of neurophysiology.

[127]  P. Heggelund,et al.  Receptive field organization of simple cells in cat striate cortex , 1981, Experimental brain research.

[128]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[129]  L Maffei,et al.  Contrast perception and electrophysiological correlates , 1973, The Journal of physiology.

[130]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[132]  Mircea Steriade,et al.  Neuromodulatory systems of thalamus and neocortex , 1995 .

[133]  T. Salt,et al.  Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus , 1996, Progress in Neurobiology.

[134]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[135]  A. Leventhal The neural basis of visual function , 1991 .

[136]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[137]  F. Ervin,et al.  Sequential change in receptive fields of striate neurons in dark adapted cats , 2004, Experimental Brain Research.

[138]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[139]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[140]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[141]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[142]  P. Heggelund,et al.  Orientation selectivity and the spatial distribution of enhancement and suppression in receptive fields of cat striate cortex cells , 2004, Experimental Brain Research.

[143]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[144]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[145]  Ehud Kaplan,et al.  Information filtering in the lateral geniculate nucleus , 1993 .

[146]  U. Eysel,et al.  Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells , 1998, Visual Neuroscience.

[147]  J D Schall,et al.  Retinal constraints on orientation specificity in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  R. McCarley,et al.  Brainstem neuromodulation and REM sleep , 1995 .

[149]  W. Singer,et al.  Inhibitory interaction in the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[150]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[151]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[152]  K. Kuriyama,et al.  Biochemical-physiology correlations in studies of the γ-aminobutyric acid system , 1968 .

[153]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[154]  W. Singer,et al.  Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat , 2004, Experimental Brain Research.

[155]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[156]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[157]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[158]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[159]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[160]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[161]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[162]  J. Wilson,et al.  Circuitry of the dorsal lateral geniculate nucleus in the cat and monkey. , 1993, Acta anatomica.

[163]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[164]  Trichur Raman Vidyasagar,et al.  Geniculate orientation biases seen with moving sine wave gratings: implications for a model of simple cell afferent connectivity , 2004, Experimental Brain Research.

[165]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[166]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[167]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[168]  ROBERT SHAPLEY,et al.  Visual spatial summation in two classes of geniculate cells , 1975, Nature.

[169]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.