The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex

Area V5 or MT of primate extrastriate visual cortex is specialized for involvement in the analysis of motion and receives input from two layers, 4B and 6, of the striate cortex or V1. Injections of horseradish peroxidase ‐ wheatgerm agglutinin into V5 reveal a patchy distribution of labelled cells and axonal terminals in layer 4B, suggesting the presence of a segregated and functionally specialized subsystem within the layer. The patches are similar in size and frequency to the cytochrome oxidase blobs of layers 2 and 3, but bear little systematic relationship to them. V5‐efferent cells in layer 6, however, tend to avoid the cores of the blobs.

[1]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[2]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[3]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[4]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. IV. Contrast and magno- parvo streams , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[11]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[12]  V. Ramachandran,et al.  Motion capture anisotropy , 1987, Vision Research.

[13]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Eugene Switkes,et al.  Parallel processing of motion and colour information , 1987, Nature.

[18]  V. S. Ramachandran,et al.  Interaction between colour and motion in human vision , 1987, Nature.

[19]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[20]  G. Phillips,et al.  Cooperative phenomena in the perception of motion direction. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[21]  W. Newsome,et al.  Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. , 1987, Journal of neurophysiology.

[22]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[23]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[24]  J. P. Cavanagh,et al.  Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity, and shape , 1987, Comput. Vis. Graph. Image Process..

[25]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[26]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[27]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[28]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Bela Julesz,et al.  Enhanced detection in the aperture of focal attention during simple discrimination tasks , 1986, Nature.

[30]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[31]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[32]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[33]  A. Johnston,et al.  Lower thresholds of motion for gratings as a function of eccentricity and contrast , 1985, Vision Research.

[34]  C. R. Michael Laminar segregation of color cells in the monkey's striate cortex , 1985, Vision Research.

[35]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[36]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[41]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[42]  D. Hubel,et al.  Complex–unoriented cells in a subregion of primate area 18 , 1985, Nature.

[43]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[44]  R E Weller,et al.  Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex , 1985, The Journal of comparative neurology.

[45]  V. Ramachandran,et al.  Perceptual Organization in Multistable Apparent Motion , 1985, Perception.

[46]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Charles G. Gross,et al.  Pattern recognition mechanisms , 1985 .

[49]  V. Ramachandran,et al.  Spatial phase and frequency in motion capture of random-dot patterns. , 1985, Spatial vision.

[50]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[51]  B. Julesz,et al.  Cooperative phenomena in apparent movement perception of random-dot cinematograms , 1984, Vision Research.

[52]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[53]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[54]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[55]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[56]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[57]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[58]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[60]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[61]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[62]  L. Chalupa,et al.  An analysis of the transport of WGA-HRP in the cat's visual system , 1984, Journal of Neuroscience Methods.

[63]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[67]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in the striate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[68]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[69]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[70]  J J Koenderink,et al.  Detection of coherent movement in peripherally viewed random-dot patterns. , 1983, Journal of the Optical Society of America.

[71]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[73]  W Fries,et al.  Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[74]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  James R. Bergen,et al.  Parallel versus serial processing in rapid pattern discrimination , 1983, Nature.

[76]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[77]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[78]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[79]  C. Galletti,et al.  Cortico-cortical connections from the visual region of the superior tempora sulcus to frontal eye field in the macaque , 1983, Brain Research.

[80]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[81]  A. L. Humphrey,et al.  Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  T. Powell,et al.  The basal dendrites of Meynert cells in the striate cortex of the monkey , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[83]  R E Weller,et al.  Cortical connections of striate cortex in the owl monkey , 1982, The Journal of comparative neurology.

[84]  H. Nauta Tracing neural connections with horseradish peroxidase M. M. Mesulam (Ed.). John Wiley, Chichester (1982). 280 pp., Cloth, $52.00/£22.00; paper, $26.00/£11.00 , 1982, Neuroscience.

[85]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[87]  D Finlay,et al.  Motion Perception in the Peripheral Visual Field , 1982, Perception.

[88]  J. Baizer Receptive field properties of V3 neurons in monkey. , 1982, Investigative ophthalmology & visual science.

[89]  G. Mitchison,et al.  Long axons within the striate cortex: their distribution, orientation, and patterns of connection. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[90]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[91]  D Regan,et al.  How do we avoid confounding the direction we are looking and the direction we are moving? , 1982, Science.

[92]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[93]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[94]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[95]  T. Powell,et al.  The number and distribution of Meynert cells in area 17 of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[96]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[97]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[98]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[99]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[100]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[101]  S. Petersen,et al.  Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. , 1981, Journal of neurophysiology.

[102]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[103]  V. Montero Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey , 1980, The Journal of comparative neurology.

[104]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[105]  Leslie G. Ungerleider,et al.  The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization , 1979, The Journal of comparative neurology.

[106]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[107]  P. Schiller,et al.  Composition of geniculostriate input ot superior colliculus of the rhesus monkey. , 1979, Journal of neurophysiology.

[108]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[109]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[110]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[111]  M. Colonnier,et al.  An anterograde degeneration study of the tangential spread of axons in cortical areas 17 and 18 of the squirrel monkey (Saimiri Sciureus) , 1978, The Journal of comparative neurology.

[112]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[113]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[114]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[115]  S. Zeki,et al.  The third visual complex of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[116]  Jon H. Kaas,et al.  Cortical projections of area 18 in owl monkeys , 1977, Vision Research.

[117]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[118]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[119]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[120]  G. H. Jacobs Visual capacities of the owl monkey (Aotus trivirgatus)—I. Spectral sensitivity and color vision , 1977, Vision Research.

[121]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[122]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[123]  S. Zeki The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. , 1976, Cold Spring Harbor symposia on quantitative biology.

[124]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[125]  T. Ogden The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones , 1975, The Journal of comparative neurology.

[126]  W. B. Spatz An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix , 1975, Brain Research.

[127]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[128]  J. Kaas,et al.  A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). , 1974, Brain research.

[129]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[130]  S. Palay,et al.  Meynert cells in the primate visual cortex , 1974, Journal of neurocytology.

[131]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[132]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[133]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[134]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[135]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[136]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[137]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[138]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[139]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[140]  S. Zeki Interhemispheric connections of prestriate cortex in monkey. , 1970, Brain research.

[141]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[142]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[143]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[144]  R. Hetherington The Perception of the Visual World , 1952 .

[145]  le Gros Clark We,et al.  The cells of Meynert in the visual cortex of the monkey. , 1942 .

[146]  W. le Gros Clark The cells of Meynert in the visual cortex of the monkey. , 1942, Journal of anatomy.