Tiny Groups Tackle Byzantine Adversaries

A popular technique for tolerating malicious faults in open distributed systems is to establish small groups of participants, each of which has a non-faulty majority. These groups are used as building blocks to design attack-resistant algorithms. Despite over a decade of active research, current constructions require group sizes of O(log n), where n is the number of participants in the system. This group size is important since communication and state costs scale polynomially with this parameter. Given the stubbornness of this logarithmic barrier, a natural question is whether better bounds are possible. Here, we consider an attacker that controls a constant fraction of the total computational resources in the system. By leveraging proof-of-work (PoW), we demonstrate how to reduce the group size exponentially to O(loglog n) while maintaining strong security guarantees. This reduction in group size yields a significant improvement in communication and state costs.

[1]  Moni Naor,et al.  Novel architectures for P2P applications: the continuous-discrete approach , 2003, SPAA '03.

[2]  John Augustine,et al.  Fast Byzantine Leader Election in Dynamic Networks , 2015, DISC.

[3]  Ian Goldberg,et al.  Towards Practical Communication in Byzantine-Resistant DHTs , 2013, IEEE/ACM Transactions on Networking.

[4]  Amos Fiat,et al.  Censorship resistant peer-to-peer content addressable networks , 2002, SODA '02.

[5]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[6]  Amos Fiat,et al.  Making Chord Robust to Byzantine Attacks , 2005, ESA.

[7]  Mayur Datar,et al.  Butterflies and Peer-to-Peer Networks , 2002, ESA.

[8]  Florian Kerschbaum,et al.  Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently , 2013, IACR Cryptol. ePrint Arch..

[9]  John Kubiatowicz,et al.  Asymptotically Efficient Approaches to Fault-Tolerance in Peer-to-Peer Networks , 2003, DISC.

[10]  Christian Scheideler,et al.  The hyperring: a low-congestion deterministic data structure for distributed environments , 2004, SODA '04.

[11]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[12]  Elaine Shi,et al.  Portcullis: protecting connection setup from denial-of-capability attacks , 2007, SIGCOMM '07.

[13]  Jie Wu,et al.  FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[14]  Liuba Shrira,et al.  The design of a robust peer-to-peer system , 2002, EW 10.

[15]  Christian Scheideler,et al.  Self-Stabilizing De Bruijn Networks , 2011, SSS.

[16]  Christian Scheideler,et al.  Towards a Scalable and Robust DHT , 2006, SPAA '06.

[17]  Maxwell Young,et al.  Proof of Work Without All the Work , 2018, ICDCN.

[18]  Moni Naor,et al.  Viceroy: a scalable and dynamic emulation of the butterfly , 2002, PODC '02.

[19]  Haifeng Yu,et al.  Sybil defenses via social networks: a tutorial and survey , 2011, SIGA.

[20]  Jared Saia,et al.  Breaking the O(n2) bit barrier: scalable byzantine agreement with an adaptive adversary , 2010, PODC.

[21]  Bruce M. Kapron,et al.  Fast asynchronous byzantine agreement and leader election with full information , 2008, SODA '08.

[22]  Prateek Saxena,et al.  A Secure Sharding Protocol For Open Blockchains , 2016, CCS.

[23]  Apu Kapadia,et al.  Halo: High-Assurance Locate for Distributed Hash Tables , 2008, NDSS.

[24]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[25]  Miguel Castro,et al.  Secure routing for structured peer-to-peer overlay networks , 2002, OSDI '02.

[26]  Maxwell Young,et al.  Reducing communication costs in robust peer-to-peer networks , 2008, Inf. Process. Lett..

[27]  Rodrigo Rodrigues,et al.  Rosebud: A Scalable Byzantine-Fault-Tolerant Storage Architecture , 2003 .

[28]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[29]  Matthew K. Wright,et al.  Salsa: a structured approach to large-scale anonymity , 2006, CCS '06.

[30]  Moni Naor,et al.  A Simple Fault Tolerant Distributed Hash Table , 2003, IPTPS.

[31]  James Aspnes,et al.  Skip graphs , 2003, SODA '03.

[32]  Michael J. Freedman,et al.  Commensal cuckoo: secure group partitioning for large-scale services , 2012, OPSR.

[33]  Stefan Saroiu,et al.  Dynamically Fault-Tolerant Content Addressable Networks , 2002, IPTPS.

[34]  Silvio Micali,et al.  ALGORAND: The Efficient and Democratic Ledger , 2016, ArXiv.

[35]  John Augustine,et al.  Towards robust and efficient computation in dynamic peer-to-peer networks , 2011, SODA.

[36]  John Augustine,et al.  Fast byzantine agreement in dynamic networks , 2013, PODC '13.

[37]  John Augustine,et al.  Storage and search in dynamic peer-to-peer networks , 2013, SPAA.

[38]  Christian Scheideler,et al.  Towards Scalable and Robust Overlay Networks , 2007, IPTPS.

[39]  Prateek Mittal,et al.  SybilControl: practical sybil defense with computational puzzles , 2012, STC '12.

[40]  Aggelos Kiayias,et al.  The Bitcoin Backbone Protocol: Analysis and Applications , 2015, EUROCRYPT.

[41]  John Augustine,et al.  Enabling Robust and Efficient Distributed Computation in Dynamic Peer-to-Peer Networks , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[42]  David L. Mills,et al.  Internet time synchronization: the network time protocol , 1991, IEEE Trans. Commun..

[43]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[44]  Christian Scheideler,et al.  Group Spreading: A Protocol for Provably Secure Distributed Name Service , 2004, ICALP.

[45]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[46]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[47]  Anne-Marie Kermarrec,et al.  Highly dynamic distributed computing with byzantine failures , 2013, PODC '13.

[48]  Christian Scheideler,et al.  Robust random number generation for peer-to-peer systems , 2006, Theor. Comput. Sci..

[49]  Christian Scheideler,et al.  A Distributed and Oblivious Heap , 2009, ICALP.

[50]  Pierre Fraigniaud,et al.  D2B: A de Bruijn based content-addressable network , 2006, Theor. Comput. Sci..

[51]  Ben Y. Zhao,et al.  An Infrastructure for Fault-tolerant Wide-area Location and Routing , 2001 .

[52]  Jared Saia,et al.  Self-healing Computation , 2014, SSS.

[53]  Jeffrey Knockel,et al.  Self-Healing of Byzantine Faults , 2012, SSS.