Computing the strong Lp− Nash equilibrium for Markov chains games: Convergence and uniqueness

Abstract This paper presents a novel method for computing the strong L p − Nash equilibrium in case of a metric state space for a class of time-discrete ergodic controllable Markov chains games. We first present a general solution for the Lp- norm for computing the strong L p − Nash equilibrium and then, we suggest an explicit solution involving the norms L1, L2 and L∞. For solving the problem we use the extraproximal method. We employ the Tikhonov’s regularization method to ensure the convergence of the cost-functions to a unique equilibrium point. We prove that the proposed method convergence in exponential time to a unique strong L p − Nash equilibrium. A game theory example illustrates the main results.

[1]  Martin Hoefer,et al.  On the Complexity of Pareto-optimal Nash and Strong Equilibria , 2010, SAGT.

[2]  T. Ichiishi A Social Coalitional Equilibrium Existence Lemma , 1981 .

[3]  Toshiyuki Hirai,et al.  Coalition-proof Nash equilibria and cores in a strategic pure exchange game of bads , 2006, Math. Soc. Sci..

[4]  Martin Hoefer,et al.  Computing Pure Nash and Strong Equilibria in Bottleneck Congestion Games , 2010, ESA.

[5]  Steven J. Brams,et al.  Critical Strategies Under Approval Voting: Who Gets Ruled In And Ruled Out , 2006 .

[6]  M. Breton,et al.  Equilibria in a Model with Partial Rivalry , 1997 .

[7]  George Xian-Zhi Yuan,et al.  The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods , 1998 .

[8]  Sang-Chul Suh Games implementing the stable rule of marriage problems in strong Nash equilibria , 2003, Soc. Choice Welf..

[9]  Shigetaka Yamakawa,et al.  A note on network formation with decay , 2006 .

[10]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[11]  Xie Ping Ding,et al.  Pareto equilibria for constrained multiobjective games in locally L-convex spaces , 2003 .

[12]  Éva Tardos,et al.  The effect of collusion in congestion games , 2006, STOC '06.

[13]  A. Rubinstein Finite automata play the repeated prisoner's dilemma , 1986 .

[14]  Shlomo Weber,et al.  Stable Coalition Structures with a Unidimensional Set of Alternatives , 1993 .

[15]  S. Hart,et al.  On the endogenous formation of coalitions , 1983 .

[16]  G. Demange Intermediate Preferences and Stable Coalition Structures , 1994 .

[17]  A. Smilde,et al.  Multicriteria decision making , 1992 .

[18]  Yishay Mansour,et al.  Strong equilibrium in cost sharing connection games , 2007, EC '07.

[19]  A. Savvateev Strong equilibrium implementation for a principal with heterogeneous agents , 2003 .

[20]  K. Tanaka,et al.  The closest solution to the shadow minimum of a cooperative dynamic game , 1989 .

[21]  H. Moulin Serial Cost-Sharing of Excludable Public Goods , 1994 .

[22]  Alexander S. Poznyak,et al.  An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games , 2016, Kybernetika.

[23]  Alexander S. Poznyak,et al.  Simple computing of the customer lifetime value: A fixed local-optimal policy approach , 2014, Journal of Systems Science and Systems Engineering.

[24]  Manfred J. Holler Coalitions and collective action , 1984 .

[25]  Alexander S. Poznyak,et al.  Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games , 2015, Int. J. Appl. Math. Comput. Sci..

[26]  R. Holzman,et al.  Strong Equilibrium in Congestion Games , 1997 .

[27]  Ariel Rubinstein,et al.  Strong perfect equilibrium in supergames , 1980 .

[28]  Hervé Moulin,et al.  Voting with Proportional Veto Power , 1982 .

[29]  M. Breton,et al.  Stable partitions in a model with group-dependent feasible sets , 2005 .

[30]  Alexander S. Poznyak,et al.  Analysis of best-reply strategies in repeated finite Markov chains games , 2013, 52nd IEEE Conference on Decision and Control.

[31]  Robert J. Aumann,et al.  16. Acceptable Points in General Cooperative n-Person Games , 1959 .

[32]  Kensuke Tanaka,et al.  On ε-equilibrium point in a noncooperative n-person game , 1991 .

[33]  Henry Tulkens,et al.  The core of an economy with multilateral environmental externalities , 1997, Int. J. Game Theory.

[34]  Tuomas Sandholm,et al.  Strong Nash Equilibrium Is in Smoothed P , 2013, AAAI.

[35]  Xie Ping Ding,et al.  Existence af Pareto Equilibria for Constrained Multiobjective Games in H-Space , 2003 .

[36]  Alexander S. Poznyak,et al.  Computing the strong Nash equilibrium for Markov chains games , 2015, Appl. Math. Comput..

[37]  Mark Voorneveld,et al.  Congestion Games and Potentials Reconsidered , 1999, IGTR.

[38]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[39]  Alexander S. Poznyak,et al.  Convergence method, properties and computational complexity for Lyapunov games , 2011, Int. J. Appl. Math. Comput. Sci..

[40]  B. Peleg,et al.  Stable Voting Procedures for Committees in Economic Environments , 2001 .

[41]  D. Henriet,et al.  Note, comment, and letter to the editorSustainable oligopolies , 1991 .

[42]  Sang-Chul Suh An algorithm for verifying double implementability in Nash and strong Nash equilibria , 2001, Math. Soc. Sci..

[43]  Roger Guesnerie,et al.  Second best taxation as a game , 1981 .

[44]  Guoqiang Tian,et al.  On the existence of strong Nash equilibria , 2014 .

[45]  Moshe Tennenholtz,et al.  Strong and Correlated Strong Equilibria in Monotone Congestion Games , 2006, WINE.

[46]  Shlomo Weber,et al.  Strong tiebout equilibrium under restricted preferences domain , 1986 .

[47]  A solution to the problem of consumption externalities , 2003 .

[48]  Shlomo Weber,et al.  Equivalence of strong and coalition-proof Nash equilibria in games without spillovers , 1997 .

[49]  A. Woźniak,et al.  Interval methods for computing strong Nash equilibria of continuous games , 2015 .

[50]  M. Whinston,et al.  Coalition-Proof Nash Equilibria I. Concepts , 1987 .

[51]  Tuomas Sandholm,et al.  Algorithms for Strong Nash Equilibrium with More than Two Agents , 2013, AAAI.

[52]  Tuomas Sandholm,et al.  On the verification and computation of strong nash equilibrium , 2013, AAMAS.