Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] P. Olver. Nonlinear Systems , 2013 .
[3] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[4] Juergen Hahn,et al. Computation of arrival cost for moving horizon estimation via unscented Kalman filtering , 2009 .
[5] Herman Bruyninckx,et al. Kalman filters for non-linear systems: a comparison of performance , 2004 .
[6] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[7] H. Sorenson,et al. NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .
[8] V. M. Popov. Criterion of quality for non-linear controlled systems , 1960 .
[9] Graham C. Goodwin,et al. Adaptive filtering prediction and control , 1984 .
[10] Andrei Romanenko,et al. The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..
[11] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[12] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[13] P. Spreij. Probability and Measure , 1996 .
[14] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[15] D. Gingras,et al. Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system , 2004, IEEE Intelligent Vehicles Symposium, 2004.
[16] G. P. Szegö,et al. ON THE ABSOLUTE STABILITY OF SAMPLED-DATA CONTROL SYSTEMS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[17] Chi-Tsong Chen,et al. Linear System Theory and Design , 1995 .
[18] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[19] Rudolph van der Merwe,et al. Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .
[20] S. F. Schmidt. APPLICATION OF STATISTICAL FILTER THEORY TO THE OPTIMAL ESTIMATION OF POSITION AND VELOCITY ON BOARD A CIRCUMLUNAR VEHICLE , 2022 .
[21] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[22] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[23] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.