Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems

This paper deals with recursive state estimation for the class of discrete time nonlinear systems whose nonlinearity consists of one or more static nonlinear one-variable functions. This class contains several important subclasses. The special structure is exploited to permit accurate computations without an increase in computational cost. The proposed method is compared with standard Extended Kalman Filter, Unscented Kalman Filter and Gauss-Hermite Kalman Filter in three illustrative examples. The results show that it yields good results with small computational cost.

[1]  W. Marsden I and J , 2012 .

[2]  P. Olver Nonlinear Systems , 2013 .

[3]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[4]  Juergen Hahn,et al.  Computation of arrival cost for moving horizon estimation via unscented Kalman filtering , 2009 .

[5]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[6]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[7]  H. Sorenson,et al.  NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .

[8]  V. M. Popov Criterion of quality for non-linear controlled systems , 1960 .

[9]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[10]  Andrei Romanenko,et al.  The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..

[11]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[12]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[13]  P. Spreij Probability and Measure , 1996 .

[14]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[15]  D. Gingras,et al.  Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[16]  G. P. Szegö,et al.  ON THE ABSOLUTE STABILITY OF SAMPLED-DATA CONTROL SYSTEMS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[18]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[19]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[20]  S. F. Schmidt APPLICATION OF STATISTICAL FILTER THEORY TO THE OPTIMAL ESTIMATION OF POSITION AND VELOCITY ON BOARD A CIRCUMLUNAR VEHICLE , 2022 .

[21]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[22]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[23]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.