Exsense: Extract sensitive information from unstructured data

[1]  Jing Zhang,et al.  Fast Detection of Transformed Data Leaks , 2016, IEEE Transactions on Information Forensics and Security.

[2]  Rob Johnson,et al.  Text Classification for Data Loss Prevention , 2011, PETS.

[3]  Xavier Tannier,et al.  Terminologies augmented recurrent neural network model for clinical named entity recognition , 2019, J. Biomed. Informatics.

[4]  Feifei Li,et al.  OpenTag: Open Attribute Value Extraction from Product Profiles , 2018, KDD.

[5]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[6]  Krys J. Kochut,et al.  A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques , 2017, ArXiv.

[7]  Wei Xu,et al.  Bidirectional LSTM-CRF Models for Sequence Tagging , 2015, ArXiv.

[8]  Slim Trabelsi Monitoring Leaked Confidential Data , 2019, 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS).

[9]  Vallipuram Muthukkumarasamy,et al.  Detecting Data Semantic: A Data Leakage Prevention Approach , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[10]  Helen Nissenbaum,et al.  VACCINE: Using Contextual Integrity For Data Leakage Detection , 2019, WWW.

[11]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[12]  Elisa Bertino,et al.  Privacy-Preserving Detection of Sensitive Data Exposure , 2015, IEEE Transactions on Information Forensics and Security.

[13]  Mu Qiao,et al.  Context-Aware Data Loss Prevention for Cloud Storage Services , 2017, 2017 IEEE 10th International Conference on Cloud Computing (CLOUD).

[14]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[15]  Wang Ling,et al.  Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation , 2015, EMNLP.

[16]  Paul Ohm Sensitive Information , 2014 .

[17]  Asaf Shabtai,et al.  Content-based data leakage detection using extended fingerprinting , 2013, ArXiv.

[18]  Andrew McCallum,et al.  Lexicon Infused Phrase Embeddings for Named Entity Resolution , 2014, CoNLL.

[19]  José María Gómez Hidalgo,et al.  Data Leak Prevention through Named Entity Recognition , 2010, 2010 IEEE Second International Conference on Social Computing.

[20]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[21]  Chu-Hsing Lin,et al.  Detecting Security Breaches in Personal Data Protection with Machine Learning , 2020, 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM).

[22]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[23]  Ruslan Salakhutdinov,et al.  Multi-Task Cross-Lingual Sequence Tagging from Scratch , 2016, ArXiv.

[24]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[25]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[26]  Yuval Elovici,et al.  CoBAn: A context based model for data leakage prevention , 2014, Inf. Sci..

[27]  Ji-sung Park,et al.  Sensitive Data Identification in Structured Data through GenNER Model based on Text Generation and NER , 2020, CNIOT.

[28]  Bradley Reaves,et al.  How Bad Can It Git? Characterizing Secret Leakage in Public GitHub Repositories , 2019, NDSS.

[29]  Asad Waqar Malik,et al.  A machine learning framework for investigating data breaches based on semantic analysis of adversary's attack patterns in threat intelligence repositories , 2019, Future Gener. Comput. Syst..

[30]  K. Robert Lai,et al.  Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model , 2016, ACL.

[31]  Som Gupta,et al.  Natural language processing in mining unstructured data from software repositories: a review , 2019, Sādhanā.

[32]  Hung Q. Ngo,et al.  A Data-Centric Approach to Insider Attack Detection in Database Systems , 2010, RAID.

[33]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.