暂无分享,去创建一个
[1] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[2] William H. Campbell. Indexing permutations , 2004 .
[3] P. Weisz,et al. Towards an explicit construction of the sine-Gordon field theory , 1976 .
[4] Gerard J. Milburn,et al. Efficient linear optics quantum computation , 2001, Quantum Inf. Comput..
[5] Pierre McKenzie,et al. Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..
[6] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[7] R. Jozsa,et al. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Seinosuke Toda,et al. PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..
[9] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.
[10] R. Baxter. Partition function of the eight vertex lattice model , 1972 .
[11] Boundary S matrix and boundary state in two-dimensional integrable quantum field theory , 1993, hep-th/9306002.
[12] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[13] Scott Aaronson,et al. Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[14] Greg Kuperberg,et al. Denseness and Zariski denseness of Jones braid representations , 2009, 0909.1881.
[15] Keisuke Fujii,et al. On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.
[16] DiVincenzo. Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[17] Alexander B. Zamolodchikov,et al. Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models , 1979 .
[18] Scott Aaronson,et al. Quantum Computing since Democritus , 2013 .
[19] Alexander B. Zamolodchikov,et al. Relativistic factorized S-matrix in two dimensions having O( N) isotopic symmetry , 1978 .
[20] Dorit Aharonov,et al. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.
[21] Lloyd,et al. Almost any quantum logic gate is universal. , 1995, Physical review letters.
[22] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[23] Dorit Aharonov,et al. The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.
[24] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[25] A. Ekert,et al. Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[26] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[27] K. B. Whaley,et al. Universal quantum computation with the exchange interaction , 2000, Nature.
[28] David P. DiVincenzo,et al. Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..
[29] Gary L. Miller,et al. The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.
[30] L. Valiant. Classical Simulation of Quantum Computations , 2005 .
[31] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[32] D. Aharonov. A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.
[33] Karsten Weihe,et al. A linear-time algorithm for edge-disjoint paths in planar graphs , 1995, Comb..
[34] David P. DiVincenzo,et al. Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..
[35] J. Preskill,et al. Encoding a qubit in an oscillator , 2000, quant-ph/0008040.
[36] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[37] D. A. Lidar,et al. Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .
[38] S. Braunstein,et al. Quantum computation , 1996 .
[39] Matthias Staudacher,et al. Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism , 2010, 1012.3990.
[40] University of Toronto,et al. Encoded Universality in Physical Implementations of a Quantum Computer , 2001 .
[41] D. Aharonov,et al. Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .
[42] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[43] C. Yang. Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .
[44] Rafael I. Nepomechie,et al. Review of AdS/CFT Integrability, Chapter III.2: Exact World-Sheet S-Matrix , 2010, 1012.3991.
[45] Scott Aaronson,et al. The computational complexity of linear optics , 2010, STOC '11.
[46] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[47] L. Faddeev. Two-Dimensional Integrable Models in Quantum Field Theory , 1981 .
[48] Andrew Chi-Chih Yao,et al. Classical physics and the Church--Turing Thesis , 2003, JACM.
[49] Peter W. Shor,et al. Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..
[50] A. Postnikov,et al. Scattering Amplitudes and the Positive Grassmannian , 2012, 1212.5605.
[51] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .
[52] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[53] Scott Aaronson,et al. Guest Column: NP-complete problems and physical reality , 2005, SIGA.
[54] Gilles Brassard,et al. Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..
[55] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[56] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[57] K. B. Whaley,et al. Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.
[58] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[59] Debbie W. Leung,et al. Quantum computation by measurements , 2003 .