Computational Complexity of Some Quantum Theories in $1+1$ Dimensions

We study the computational complexity of certain integrable quantum theories in 1+1 dimensions. We formalize a model of quantum computation based on these theories. In this model, distinguishable particles start out with known momenta and initial superposition of different configurations. Then the label of these particles are measured at the end. We prove that additive approximation to single amplitudes of these models can be obtained by the one-clean-qubit model, if no initial superpositions are allowed. However, if arbitrary initial states and non-adaptive intermediate measurements are allowed, we show that conditioned on infinite polynomial hierarchy assumption it is hard to sample from the output distribution of these models on a classical randomized computer. A classical analogue of this model is also formalized and its computational power is pinned down within the complexity classes below BPP and NP.

[1]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[2]  William H. Campbell Indexing permutations , 2004 .

[3]  P. Weisz,et al.  Towards an explicit construction of the sine-Gordon field theory , 1976 .

[4]  Gerard J. Milburn,et al.  Efficient linear optics quantum computation , 2001, Quantum Inf. Comput..

[5]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[6]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[7]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[9]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[10]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[11]  Boundary S matrix and boundary state in two-dimensional integrable quantum field theory , 1993, hep-th/9306002.

[12]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[13]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Greg Kuperberg,et al.  Denseness and Zariski denseness of Jones braid representations , 2009, 0909.1881.

[15]  Keisuke Fujii,et al.  On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.

[16]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  Alexander B. Zamolodchikov,et al.  Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models , 1979 .

[18]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[19]  Alexander B. Zamolodchikov,et al.  Relativistic factorized S-matrix in two dimensions having O( N) isotopic symmetry , 1978 .

[20]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[21]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[22]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[23]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[24]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[25]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[27]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[28]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..

[29]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[30]  L. Valiant Classical Simulation of Quantum Computations , 2005 .

[31]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[32]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.

[33]  Karsten Weihe,et al.  A linear-time algorithm for edge-disjoint paths in planar graphs , 1995, Comb..

[34]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[35]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[36]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[37]  D. A. Lidar,et al.  Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .

[38]  S. Braunstein,et al.  Quantum computation , 1996 .

[39]  Matthias Staudacher,et al.  Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism , 2010, 1012.3990.

[40]  University of Toronto,et al.  Encoded Universality in Physical Implementations of a Quantum Computer , 2001 .

[41]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[42]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[43]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[44]  Rafael I. Nepomechie,et al.  Review of AdS/CFT Integrability, Chapter III.2: Exact World-Sheet S-Matrix , 2010, 1012.3991.

[45]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[46]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[47]  L. Faddeev Two-Dimensional Integrable Models in Quantum Field Theory , 1981 .

[48]  Andrew Chi-Chih Yao,et al.  Classical physics and the Church--Turing Thesis , 2003, JACM.

[49]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[50]  A. Postnikov,et al.  Scattering Amplitudes and the Positive Grassmannian , 2012, 1212.5605.

[51]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[52]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[53]  Scott Aaronson,et al.  Guest Column: NP-complete problems and physical reality , 2005, SIGA.

[54]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[55]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[56]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[57]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[58]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[59]  Debbie W. Leung,et al.  Quantum computation by measurements , 2003 .