Neural mechanisms of acquired phasic dopamine responses in learning

[1]  W. Brown Animal Intelligence: Experimental Studies , 1912, Nature.

[2]  Stern Bt,et al.  EXCERPTA MEDICA. , 1974, Canadian Medical Association journal.

[3]  E. N. Sokolov Higher nervous functions; the orienting reflex. , 1963, Annual review of physiology.

[4]  Stanley C. Ratner,et al.  Comparative psychology : research in animal behavior , 1964 .

[5]  B. Maher,et al.  Progress in experimental personality research , 1964 .

[6]  Toward a theory of classical conditioning: cognitive, emotional, and motor components of the conditional reflex. , 1965 .

[7]  Toward a theory of classical conditioning: cognitive, emotional, and motor components of the conditional reflex. , 1965, Progress in experimental personality research.

[8]  N. Schneiderman Interstimulus interval function of the nictitating membrane response of the rabbit under delay versus trace conditioning. , 1966 .

[9]  L. Kamin Predictability, surprise, attention, and conditioning , 1967 .

[10]  P. L. Brown,et al.  Auto-shaping of the pigeon's key-peck. , 1968, Journal of the experimental analysis of behavior.

[11]  M. C. Smith,et al.  CS-US interval and US intensity in classical conditioning of the rabbit's nictitating membrane response. , 1968, Journal of comparative and physiological psychology.

[12]  B. Campbell,et al.  Punishment and aversive behavior , 1969 .

[13]  J. O’Keefe,et al.  Complex swnsory properties of certain amygadala units in the freely moving cat. , 1969, Experimental neurology.

[14]  Howard Rachlin Autoshaping of key pecking in pigeons with negative reinforcement. , 1969, Journal of the experimental analysis of behavior.

[15]  J. Fuster,et al.  Reactivity of limbic neurons of the monkey to appetitive and aversive signals. , 1971, Electroencephalography and clinical neurophysiology.

[16]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[17]  R. Hinde Constraints on learning , 1973 .

[18]  M. Wessells The effects of reinforcement upon the prepecking behaviors of pigeons in the autoshaping experiment. , 1974, Journal of the experimental analysis of behavior.

[19]  J. Gibbon,et al.  Signal-food contingency and signal frequency in a continuous trials auto-shaping paradigm , 1975 .

[20]  E. T. Rolls,et al.  Hypothalamic neuronal responses associated with the sight of food , 1976, Brain Research.

[21]  E. Rolls,et al.  Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food , 1976, Experimental Neurology.

[22]  R. Norgren Taste pathways to hypothalamus and amygdala , 1976, The Journal of comparative neurology.

[23]  P. Holland Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. , 1977, Journal of experimental psychology. Animal behavior processes.

[24]  O. Phillipson Afferent projections to A10 dopaminergic neurones in the rat as shown by the retrograde transport of horseradisd peroxidase , 1978, Neuroscience Letters.

[25]  E. Rolls,et al.  Visual responses of neurons in the dorsolateral amygdala of the alert monkey , 1979, Experimental Neurology.

[26]  A. Grace,et al.  Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. , 1979, European journal of pharmacology.

[27]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[28]  H. Terrace,et al.  Autoshaping and Conditioning Theory , 1980 .

[29]  T. Ono,et al.  Monkey lateral hypothalamic neuron response to sight of food, and during bar press and ingestion , 1981, Neuroscience Letters.

[30]  Barry L. Jacobs,et al.  Response of dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking cycle , 1983, Brain Research.

[31]  P. Holland Origins of Behavior in Pavlovian Conditioning , 1984 .

[32]  A. Grace,et al.  Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity , 1985, Brain Research.

[33]  C. Gerfen The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat , 1985, The Journal of comparative neurology.

[34]  K. Nakamura,et al.  Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals. , 1986, Journal of neurophysiology.

[35]  K. Nakamura,et al.  Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. , 1986, Journal of neurophysiology.

[36]  C. Gerfen,et al.  The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  B. Roozendaal,et al.  The central amygdala is involved in the conditioned but not in the meal-induced cephalic insulin response in the rat , 1990, Neuroscience Letters.

[38]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[39]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. , 1990, Journal of neurophysiology.

[40]  U. Frey,et al.  Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices , 1990, Brain Research.

[41]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[42]  H. Groenewegen,et al.  The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. , 1990, Progress in brain research.

[43]  M. Gallagher,et al.  The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  U. Frey,et al.  The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro , 1991, Neuroscience Letters.

[45]  Glutamate-immunoreactive neurons of the central amygdaloid nucleus projecting to the subretrofacial nucleus of SHR and WKY rats: A double-labeling study , 1991, Neuroscience Letters.

[46]  E. J. Thompson,et al.  The Amygdala. Neurobiological Aspects of Emotion, Memory and Mental Dysfunction , 1992 .

[47]  T. Gray,et al.  Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat , 1992, Brain Research Bulletin.

[48]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[49]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[50]  H. Groenewegen,et al.  Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  P. Holland,et al.  Preserved configural learning and spatial learning impairment in rats with hippocampal damage , 1992, Hippocampus.

[52]  W. Schultz,et al.  Neuronal activity in monkey ventral striatum related to the expectation of reward , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  W. Schultz,et al.  Neuronal activity in monkey striatum related to the expectation of predictable environmental events. , 1992, Journal of neurophysiology.

[54]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.

[55]  T. Ono,et al.  Amygdala-hypothalamic control of feeding behavior in monkey: Single cell responses before and after reversible blockade of temporal cortex or amygdala projections , 1993, Behavioural Brain Research.

[56]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[58]  M. Gallagher,et al.  The amygdala complex: multiple roles in associative learning and attention. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Michael Davis,et al.  Neurotransmission in the rat amygdala related to fear and anxiety , 1994, Trends in Neurosciences.

[60]  E. Kandel,et al.  D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Hisao Nishijo,et al.  Amygdala role in conditioned associative learning , 1995, Progress in Neurobiology.

[62]  A. S. Freeman,et al.  Effects of electrical stimulation of the central nucleus of the amygdala on the in vivo electrophysiological activity of rat nigral dopaminergic neurons , 1995, Synapse.

[63]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[64]  F. Bloom,et al.  Psychopharmacology: The Fourth Generation of Progress , 1995 .

[65]  J. Wickens,et al.  Cellular models of reinforcement. , 1995 .

[66]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[67]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[68]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[70]  P. Holland,et al.  Neurotoxic Lesions of Basolateral, But Not Central, Amygdala Interfere with Pavlovian Second-Order Conditioning and Reinforcer Devaluation Effects , 1996, The Journal of Neuroscience.

[71]  N. Schmajuk Animal Learning and Cognition: A Neural Network Approach , 1997 .

[72]  J. Horvitz,et al.  Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat , 1997, Brain Research.

[73]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[74]  P. Holland,et al.  The Role of an Amygdalo-Nigrostriatal Pathway in Associative Learning , 1997, The Journal of Neuroscience.

[75]  T. Robbins,et al.  Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala , 1997, Nature.

[76]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[77]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[78]  Ralph R. Miller,et al.  Time as content in Pavlovian conditioning , 1998, Behavioural Processes.

[79]  John F. Disterhoft,et al.  Lesions of the Caudal Area of Rabbit Medial Prefrontal Cortex Impair Trace Eyeblink Conditioning , 1998, Neurobiology of Learning and Memory.

[80]  W. Schultz,et al.  A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task , 1999, Neuroscience.

[81]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[82]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[83]  G. Schoenbaum,et al.  Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning , 1999, The Journal of Neuroscience.

[84]  S. Haber,et al.  The central nucleus of the amygdala projection to dopamine subpopulations in primates , 2000, Neuroscience.

[85]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[86]  J. Disterhoft,et al.  Cortical involvement in acquisition and extinction of trace eyeblink conditioning. , 2000, Behavioral neuroscience.

[87]  C. Fiorillo,et al.  Cholinergic Inhibition of Ventral Midbrain Dopamine Neurons , 2000, The Journal of Neuroscience.

[88]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[89]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[90]  J. Wickens,et al.  Brain Dynamics and the Striatal Complex , 2000 .

[91]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[92]  J. Dinsmoor Stimuli inevitably generated by behavior that avoids electric shock are inherently reinforcing. , 2001, Journal of the experimental analysis of behavior.

[93]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[94]  L. Swanson,et al.  Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems , 2001, Brain Research Reviews.

[95]  R. Wise,et al.  Novelty‐evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area , 2001, The European journal of neuroscience.

[96]  B. Everitt,et al.  Differential Involvement of NMDA, AMPA/Kainate, and Dopamine Receptors in the Nucleus Accumbens Core in the Acquisition and Performance of Pavlovian Approach Behavior , 2001, The Journal of Neuroscience.

[97]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[98]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[99]  P. Sanberg,et al.  Neuroscience and Biobehavioral Reviews , 2002, Physiology & Behavior.

[100]  E. Murray,et al.  The amygdala and reward , 2002, Nature Reviews Neuroscience.

[101]  P. Holland,et al.  Amygdalo-Hypothalamic Circuit Allows Learned Cues to Override Satiety and Promote Eating , 2002, The Journal of Neuroscience.

[102]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[103]  T. Robbins,et al.  Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function , 2002, Behavioural Brain Research.

[104]  David S. Touretzky,et al.  Timing and Partial Observability in the Dopamine System , 2002, NIPS.

[105]  B. Everitt,et al.  Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex , 2002, Neuroscience & Biobehavioral Reviews.

[106]  P. Holland,et al.  Operant and Pavlovian control of visual stimulus orienting and food-related behaviors in rats with lesions of the amygdala central nucleus. , 2002, Behavioral neuroscience.

[107]  Peter Dayan,et al.  Dopamine: generalization and bonuses , 2002, Neural Networks.

[108]  T. Robbins,et al.  Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. , 2002, Behavioral neuroscience.

[109]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[110]  G. Schoenbaum,et al.  Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala , 2003, Neuron.

[111]  Li I. Zhang,et al.  Suppression of cortical representation through backward conditioning , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Wolfram Schultz,et al.  Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. , 2003, Journal of neurophysiology.

[113]  A. Phillips,et al.  Independent modulation of basal and feeding-evoked dopamine efflux in the nucleus accumbens and medial prefrontal cortex by the central and basolateral amygdalar nuclei in the rat , 2003, Neuroscience.

[114]  A. Grace,et al.  Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission , 2003, Nature Neuroscience.

[115]  Tatsuo K Sato,et al.  Correlated Coding of Motivation and Outcome of Decision by Dopamine Neurons , 2003, The Journal of Neuroscience.

[116]  Peter Redgrave,et al.  A direct projection from superior colliculus to substantia nigra for detecting salient visual events , 2003, Nature Neuroscience.

[117]  Terrence J. Sejnowski,et al.  Exploration Bonuses and Dual Control , 1996, Machine Learning.

[118]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[119]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[120]  Joseph E LeDoux The Emotional Brain, Fear, and the Amygdala , 2003, Cellular and Molecular Neurobiology.

[121]  R. Hampson,et al.  Reward, memory and substance abuse: functional neuronal circuits in the nucleus accumbens , 2004, Neuroscience & Biobehavioral Reviews.

[122]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[123]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[124]  Stephen Grossberg,et al.  How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades , 2004, Neural Networks.

[125]  W. Pan,et al.  Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network , 2005, The Journal of Neuroscience.

[126]  Vanessa McKenna,et al.  Amygdala central nucleus function is necessary for learning, but not expression, of conditioned auditory orienting. , 2005, Behavioral neuroscience.

[127]  Terje Sagvolden,et al.  Behavioral and Brain Functions. A new journal , 2005, Behavioral and Brain Functions.

[128]  Jonathan D. Cohen,et al.  An exploration-exploitation model based on norepinepherine and dopamine activity , 2005, NIPS.

[129]  P. Dayan,et al.  Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control , 2005, Nature Neuroscience.

[130]  C. Lustig,et al.  Not “just” a coincidence: Frontal‐striatal interactions in working memory and interval timing , 2005, Memory.

[131]  B. Balleine,et al.  Double Dissociation of Basolateral and Central Amygdala Lesions on the General and Outcome-Specific Forms of Pavlovian-Instrumental Transfer , 2005, The Journal of Neuroscience.

[132]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[133]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[134]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[135]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[136]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[137]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[138]  P. Dayan,et al.  Dopamine, uncertainty and TD learning , 2005, Behavioral and Brain Functions.

[139]  W. Schultz,et al.  Evidence that the delay-period activity of dopamine neurons corresponds to reward uncertainty rather than backpropagating TD errors , 2005, Behavioral and Brain Functions.

[140]  P. Holland,et al.  Role of Amygdalo-Nigral Circuitry in Conditioning of a Visual Stimulus Paired with Food , 2005, The Journal of Neuroscience.

[141]  A. E. Kelley,et al.  Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala , 2005, Neuroscience.

[142]  M. Roitman,et al.  Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output , 2005, Neuron.

[143]  H. Holcomb,et al.  Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. , 2005, Schizophrenia bulletin.

[144]  Thomas E. Hazy,et al.  Banishing the homunculus: Making working memory work , 2006, Neuroscience.

[145]  K. Skoblenick,et al.  Dopamine-D1 and -D2 receptors differentially regulate synapsin II expression in the rat brain , 2006, Neuroscience.

[146]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[147]  K. Ressler,et al.  Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion , 2006, Brain Research.

[148]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[149]  Michael J. Frank,et al.  A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. , 2006, Behavioral neuroscience.

[150]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[151]  M. D’Esposito,et al.  Reversal learning in Parkinson's disease depends on medication status and outcome valence , 2006, Neuropsychologia.

[152]  P. Glimcher,et al.  Statistics of midbrain dopamine neuron spike trains in the awake primate. , 2007, Journal of neurophysiology.

[153]  Thomas E. Hazy,et al.  PVLV: the primary value and learned value Pavlovian learning algorithm. , 2007, Behavioral neuroscience.

[154]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[155]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[156]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[157]  Joseph J. Paton,et al.  Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala , 2007, Neuron.

[158]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[159]  E. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling , 2007, BMC Neuroscience.

[160]  J. Horvitz,et al.  Dopaminergic Mechanisms in Actions and Habits , 2007, The Journal of Neuroscience.

[161]  R. Carelli,et al.  The Nucleus Accumbens and Pavlovian Reward Learning , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[162]  Thomas E. Hazy,et al.  Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[163]  Jonathan D. Cohen,et al.  On the Control of Control: The Role of Dopamine in Regulating Prefrontal Function and Working Memory , 2007 .

[164]  P. Glimcher Understanding risk: A guide for the perplexed , 2008, Cognitive, affective & behavioral neuroscience.

[165]  R. Joosten,et al.  Reward-Predictive Cues Enhance Excitatory Synaptic Strength onto Midbrain Dopamine Neurons , 2008, Science.

[166]  From economics and neuroeconomics Understanding risk : A guide for the perplexed , 2008 .

[167]  B. Moghaddam,et al.  Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release , 2008, The European journal of neuroscience.

[168]  N. Daw,et al.  Striatal Activity Underlies Novelty-Based Choice in Humans , 2008, Neuron.

[169]  Michael X. Cohen,et al.  A Role for Dopamine in Temporal Decision Making and Reward Maximization in Parkinsonism , 2008, The Journal of Neuroscience.

[170]  D. Bullock,et al.  A Local Circuit Model of Learned Striatal and Dopamine Cell Responses under Probabilistic Schedules of Reward , 2008, The Journal of Neuroscience.

[171]  P. Dayan,et al.  Reinforcement learning: The Good, The Bad and The Ugly , 2008, Current Opinion in Neurobiology.

[172]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[173]  Michael J. Frank,et al.  Single dose of a dopamine agonist impairs reinforcement learning in humans: Evidence from event‐related potentials and computational modeling of striatal‐cortical function , 2009, Human brain mapping.

[174]  M. Pessiglione,et al.  Pharmacological modulation of subliminal learning in Parkinson's and Tourette's syndromes , 2009, Proceedings of the National Academy of Sciences.

[175]  David E. Moorman,et al.  Role of lateral hypothalamic orexin neurons in reward processing and addiction , 2009, Neuropharmacology.

[176]  M. Frank,et al.  Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration , 2009, The Journal of Neuroscience.

[177]  M. Gluck,et al.  Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patients. , 2009, Brain : a journal of neurology.

[178]  M. Frank,et al.  Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. , 2009, Nature neuroscience.

[179]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex , 2010, Annals of Neurosciences.

[180]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .