The AFLOW Fleet for Materials Discovery

The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.

Robert M. Hanson | Marco Buongiorno Nardelli | Cormac Toher | Corey Oses | Stefano Curtarolo | Eva Zurek | Olexandr Isayev | Alexander Tropsha | Ilaria Siloi | Arrigo Calzolari | David Hicks | Harvey Shi | Jose J. Plata | Frisco Rose | Ohad Levy | Marco Fornari | Eric Gossett | Eric Perim | Ichiro Takeuchi | Wahyu Setyawan | Aleksey N. Kolmogorov | Chandramouli Nyshadham | Stefano Sanvito | Michael J. Mehl | Natalio Mingo | Junkai Xue | Denise C. Ford | Priya Gopal | Yoav Lederer | Kesong Yang | Luis A. Agapito | Kevin Rasch | Pinku Nath | Rabih Al Rahal Al Orabi | Jes'us Carrete | O. Isayev | A. Tropsha | Eric Gossett | I. Takeuchi | A. Calzolari | M. Nardelli | S. Curtarolo | W. Setyawan | G. Hart | R. Chepulskii | Richard H. Taylor | Shidong Wang | Junkai Xue | Kesong Yang | O. Levy | M. Mehl | M. Costa | C. Oses | C. Toher | M. Fornari | E. Zurek | S. Sanvito | N. Mingo | C. Nyshadham | A. Kolmogorov | F. Legrain | P. Nath | D. Usanmaz | Camilo E. Calderon | J. Carrete | F. Cerasoli | R. M. Hanson | Demet Usanmaz | Haihang Wang | Roman V. Chepulskii | Shidong Wang | J. Plata | Fleur Legrain | R. A. Orabi | I. Siloi | P. Gopal | D. Ford | Michal Jahn'atek | Geena Gomez | Andrew R. Supka | Frank T. Cerasoli | Laalitha Liyanage | Haihang Wang | Gus L. W Hart | Pino D'Amico | Marcio Costa | Riccardo De Gennaro | E. Perim | F. Rose | P. D’Amico | Kevin Rasch | A. Supka | Y. Lederer | L. Liyanage | Harvey Shi | David Hicks | R. Gennaro | Geena Gomez | Michal Jahn'atek | Laalitha S I Liyanage

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  Marco Buongiorno Nardelli,et al.  High-Throughput Prediction of Finite-Temperature Properties using the Quasi-Harmonic Approximation , 2016, 1603.06924.

[3]  Marco Buongiorno Nardelli,et al.  The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.

[4]  M. Elcombe,et al.  The lattice dynamics of calcium fluoride , 1970 .

[5]  S. Curtarolo,et al.  Accelerated discovery of new magnets in the Heusler alloy family , 2017, Science Advances.

[6]  D. Strauch,et al.  Lattice-dynamical and ground-state properties ofCaF2studied by inelastic neutron scattering and density-functional methods , 2003 .

[7]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[8]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[9]  Cormac Toher,et al.  Evaluation of the tantalum-titanium phase diagram from ab-initio calculations , 2016 .

[10]  Cormac Toher,et al.  The search for high entropy alloys: A high-throughput ab-initio approach , 2017, Acta Materialia.

[11]  Xavier Andrade,et al.  Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. , 2015, Physical chemistry chemical physics : PCCP.

[12]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[13]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[14]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[15]  Stefano Curtarolo,et al.  Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.

[16]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[17]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[18]  M. Nardelli,et al.  An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library , 2017, npj Computational Materials.

[19]  M. Nardelli,et al.  High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity , 2016, 1607.07826.

[20]  Stefano Curtarolo,et al.  How the Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids , 2017, 1703.02309.

[21]  Gus L. W. Hart,et al.  Hafnium binary alloys from experiments and first principles , 2009, 0907.5131.

[22]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Luis A. Agapito,et al.  Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional , 2015, 1505.05245.

[25]  R. Franco,et al.  THERMODYNAMICAL PROPERTIES OF SOLIDS FROM MICROSCOPIC THEORY : APPLICATIONS TO MGF2 AND AL2O3 , 1996 .

[26]  M. Buongiorno Nardelli,et al.  AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians , 2017 .

[27]  Cormac Toher,et al.  AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. , 2018, Acta crystallographica. Section A, Foundations and advances.

[28]  S. Curtarolo,et al.  The molybdenum-titanium phase diagram evaluated from ab-initio calculations , 2016, 1610.01995.

[29]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[30]  Víctor Luaña,et al.  GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .

[31]  Corey Oses,et al.  Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach , 2016 .

[32]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[33]  M. Nardelli,et al.  PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the Projections of electronic wavefunctions on Atomic Orbital bases (PAO), including characterization of topological materials , 2018 .

[34]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[35]  Marco Buongiorno Nardelli,et al.  Accurate tight-binding Hamiltonian matrices from ab initio calculations: Minimal basis sets , 2015, 1509.02558.

[36]  Cormac Toher,et al.  Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases , 2016, Nature Communications.

[37]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[38]  Gus L. W. Hart,et al.  The New Face of Rhodium Alloys: Revealing Ordered Structures from First Principles. , 2010 .

[39]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[40]  Carlo Cavazzoni,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Marco Buongiorno Nardelli,et al.  Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery , 2015 .

[44]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[45]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[46]  Marco Buongiorno Nardelli,et al.  AFLUX: The LUX materials search API for the AFLOW data repositories , 2016, 1612.05130.

[47]  Marco Buongiorno Nardelli,et al.  Accurate tight-binding Hamiltonians for two-dimensional and layered materials , 2016, 1601.02657.

[48]  Luis A. Agapito,et al.  Accurate ab initio tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles , 2016, 1608.05685.

[49]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[51]  Marco Buongiorno Nardelli,et al.  Effective and accurate representation of extended Bloch states on finite Hilbert spaces , 2013, 1310.0060.

[52]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[53]  Gus L. W. Hart,et al.  A computational high-throughput search for new ternary superalloys , 2016, 1603.05967.

[54]  Gus L. W. Hart,et al.  The AFLOW Library of Crystallographic Prototypes: Part 1 , 2017 .

[55]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[56]  Cormac Toher,et al.  AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis , 2018, J. Chem. Inf. Model..

[57]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[58]  W. A. Goddard,et al.  a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations , 2022 .

[59]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[60]  Cormac Toher,et al.  AFLOW-ML: A RESTful API for machine-learning predictions of materials properties , 2017, Computational Materials Science.

[61]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[62]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[63]  V. L. Karen,et al.  Inorganic crystal structure database: new developments , 2002 .

[64]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[65]  Cormac Toher,et al.  The effect of lattice stability determination on the computational phase diagrams of intermetallic alloys , 2017 .

[66]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[67]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[68]  W. Spitzer,et al.  INFRARED PROPERTIES OF CaF$sub 2$, SrF$sub 2$, AND BaF$sub 2$ , 1962 .

[69]  Marco Buongiorno Nardelli,et al.  Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids , 2016, 1611.05714.