The AFLOW Fleet for Materials Discovery
暂无分享,去创建一个
Robert M. Hanson | Marco Buongiorno Nardelli | Cormac Toher | Corey Oses | Stefano Curtarolo | Eva Zurek | Olexandr Isayev | Alexander Tropsha | Ilaria Siloi | Arrigo Calzolari | David Hicks | Harvey Shi | Jose J. Plata | Frisco Rose | Ohad Levy | Marco Fornari | Eric Gossett | Eric Perim | Ichiro Takeuchi | Wahyu Setyawan | Aleksey N. Kolmogorov | Chandramouli Nyshadham | Stefano Sanvito | Michael J. Mehl | Natalio Mingo | Junkai Xue | Denise C. Ford | Priya Gopal | Yoav Lederer | Kesong Yang | Luis A. Agapito | Kevin Rasch | Pinku Nath | Rabih Al Rahal Al Orabi | Jes'us Carrete | O. Isayev | A. Tropsha | Eric Gossett | I. Takeuchi | A. Calzolari | M. Nardelli | S. Curtarolo | W. Setyawan | G. Hart | R. Chepulskii | Richard H. Taylor | Shidong Wang | Junkai Xue | Kesong Yang | O. Levy | M. Mehl | M. Costa | C. Oses | C. Toher | M. Fornari | E. Zurek | S. Sanvito | N. Mingo | C. Nyshadham | A. Kolmogorov | F. Legrain | P. Nath | D. Usanmaz | Camilo E. Calderon | J. Carrete | F. Cerasoli | R. M. Hanson | Demet Usanmaz | Haihang Wang | Roman V. Chepulskii | Shidong Wang | J. Plata | Fleur Legrain | R. A. Orabi | I. Siloi | P. Gopal | D. Ford | Michal Jahn'atek | Geena Gomez | Andrew R. Supka | Frank T. Cerasoli | Laalitha Liyanage | Haihang Wang | Gus L. W Hart | Pino D'Amico | Marcio Costa | Riccardo De Gennaro | E. Perim | F. Rose | P. D’Amico | Kevin Rasch | A. Supka | Y. Lederer | L. Liyanage | Harvey Shi | David Hicks | R. Gennaro | Geena Gomez | Michal Jahn'atek | Laalitha S I Liyanage
[1] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[2] Marco Buongiorno Nardelli,et al. High-Throughput Prediction of Finite-Temperature Properties using the Quasi-Harmonic Approximation , 2016, 1603.06924.
[3] Marco Buongiorno Nardelli,et al. The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.
[4] M. Elcombe,et al. The lattice dynamics of calcium fluoride , 1970 .
[5] S. Curtarolo,et al. Accelerated discovery of new magnets in the Heusler alloy family , 2017, Science Advances.
[6] D. Strauch,et al. Lattice-dynamical and ground-state properties ofCaF2studied by inelastic neutron scattering and density-functional methods , 2003 .
[7] I. D. Brown,et al. The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..
[8] S. Curtarolo,et al. AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.
[9] Cormac Toher,et al. Evaluation of the tantalum-titanium phase diagram from ab-initio calculations , 2016 .
[10] Cormac Toher,et al. The search for high entropy alloys: A high-throughput ab-initio approach , 2017, Acta Materialia.
[11] Xavier Andrade,et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. , 2015, Physical chemistry chemical physics : PCCP.
[12] J. Zaanen,et al. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.
[13] Cormac Toher,et al. Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.
[14] Marco Buongiorno Nardelli,et al. High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.
[15] Stefano Curtarolo,et al. Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.
[16] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[17] Stefano Curtarolo,et al. High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.
[18] M. Nardelli,et al. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library , 2017, npj Computational Materials.
[19] M. Nardelli,et al. High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity , 2016, 1607.07826.
[20] Stefano Curtarolo,et al. How the Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids , 2017, 1703.02309.
[21] Gus L. W. Hart,et al. Hafnium binary alloys from experiments and first principles , 2009, 0907.5131.
[22] Marco Buongiorno Nardelli,et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.
[23] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[24] Luis A. Agapito,et al. Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional , 2015, 1505.05245.
[25] R. Franco,et al. THERMODYNAMICAL PROPERTIES OF SOLIDS FROM MICROSCOPIC THEORY : APPLICATIONS TO MGF2 AND AL2O3 , 1996 .
[26] M. Buongiorno Nardelli,et al. AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians , 2017 .
[27] Cormac Toher,et al. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. , 2018, Acta crystallographica. Section A, Foundations and advances.
[28] S. Curtarolo,et al. The molybdenum-titanium phase diagram evaluated from ab-initio calculations , 2016, 1610.01995.
[29] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[30] Víctor Luaña,et al. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .
[31] Corey Oses,et al. Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach , 2016 .
[32] Muratahan Aykol,et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .
[33] M. Nardelli,et al. PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the Projections of electronic wavefunctions on Atomic Orbital bases (PAO), including characterization of topological materials , 2018 .
[34] Marco Buongiorno Nardelli,et al. The high-throughput highway to computational materials design. , 2013, Nature materials.
[35] Marco Buongiorno Nardelli,et al. Accurate tight-binding Hamiltonian matrices from ab initio calculations: Minimal basis sets , 2015, 1509.02558.
[36] Cormac Toher,et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases , 2016, Nature Communications.
[37] Boris Kozinsky,et al. AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.
[38] Gus L. W. Hart,et al. The New Face of Rhodium Alloys: Revealing Ordered Structures from First Principles. , 2010 .
[39] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[40] Carlo Cavazzoni,et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.
[41] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[42] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[43] Marco Buongiorno Nardelli,et al. Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery , 2015 .
[44] Karsten W. Jacobsen,et al. An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..
[45] Gus L. W. Hart,et al. Algorithm for Generating Derivative Structures , 2008 .
[46] Marco Buongiorno Nardelli,et al. AFLUX: The LUX materials search API for the AFLOW data repositories , 2016, 1612.05130.
[47] Marco Buongiorno Nardelli,et al. Accurate tight-binding Hamiltonians for two-dimensional and layered materials , 2016, 1601.02657.
[48] Luis A. Agapito,et al. Accurate ab initio tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles , 2016, 1608.05685.
[49] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[50] A. A. Maradudin,et al. Theory of lattice dynamics in the harmonic approximation , 1971 .
[51] Marco Buongiorno Nardelli,et al. Effective and accurate representation of extended Bloch states on finite Hilbert spaces , 2013, 1310.0060.
[52] Anubhav Jain,et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .
[53] Gus L. W. Hart,et al. A computational high-throughput search for new ternary superalloys , 2016, 1603.05967.
[54] Gus L. W. Hart,et al. The AFLOW Library of Crystallographic Prototypes: Part 1 , 2017 .
[55] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[56] Cormac Toher,et al. AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis , 2018, J. Chem. Inf. Model..
[57] W. Goddard,et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .
[58] W. A. Goddard,et al. a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations , 2022 .
[59] Svetlozar Nestorov,et al. The Computational Materials Repository , 2012, Computing in Science & Engineering.
[60] Cormac Toher,et al. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties , 2017, Computational Materials Science.
[61] Corey Oses,et al. Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.
[62] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[63] V. L. Karen,et al. Inorganic crystal structure database: new developments , 2002 .
[64] Matthias Scheffler,et al. Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..
[65] Cormac Toher,et al. The effect of lattice stability determination on the computational phase diagrams of intermetallic alloys , 2017 .
[66] Cormac Toher,et al. Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.
[67] Marco Buongiorno Nardelli,et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .
[68] W. Spitzer,et al. INFRARED PROPERTIES OF CaF$sub 2$, SrF$sub 2$, AND BaF$sub 2$ , 1962 .
[69] Marco Buongiorno Nardelli,et al. Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids , 2016, 1611.05714.