Generating Hard Satisfiability Problems

Abstract We report results from large-scale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiability testing procedures.

[1]  David A. McAllester,et al.  A Rearrangement Search Strategy for Determining Propositional Satisfiability , 1988, AAAI.

[2]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[3]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[6]  Olivier Dubois,et al.  Counting the Number of Solutions for Instances of Satisfiability , 1991, Theor. Comput. Sci..

[7]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[8]  Yumi K. Tsuji,et al.  EVIDENCE FOR A SATISFIABILITY THRESHOLD FOR RANDOM 3CNF FORMULAS , 1992 .

[9]  John Franco,et al.  Probabilistic performance of a heuristic for the satisfiability problem , 1988, Discret. Appl. Math..

[10]  Paul Walton Purdom,et al.  Average Time Analyses of Simplified Davis-Putnam Procedures , 1982, Inf. Process. Lett..

[11]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[12]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[13]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[14]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[15]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[17]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..

[18]  Hector J. Levesque,et al.  Some Pitfalls for Experimenters with Random SAT , 1996, Artif. Intell..

[19]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[20]  John Franco Probabilistic Analysis of Algorithms for NP-Complete Problems. , 1984 .

[21]  Paul G. Spirakis,et al.  Tail bounds for occupancy and the satisfiability threshold conjecture , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Paul Walton Purdom,et al.  Polynomial-average-time satisfiability problems , 1987, Inf. Sci..

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Giorgio Gallo,et al.  Algorithms for Testing the Satisfiability of Propositional Formulae , 1989, J. Log. Program..

[25]  Tad Hogg,et al.  Using Deep Structure to Locate Hard Problems , 1992, AAAI.

[26]  J. Hooker Resolution vs. cutting plane solution of inference problems: Some computational experience , 1988 .

[27]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[28]  A. Vellino The complexity of automated reasoning , 1990 .

[29]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[30]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[31]  Zvi Galil,et al.  On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..

[32]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[33]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..

[34]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[35]  C. Y. Tang,et al.  Solving the Satisfiability Problem by Using Randomized Approach , 1992, Inf. Process. Lett..

[36]  Paul Purdom,et al.  A survey of average time analyses of satisfiability algorithms , 1991 .

[37]  Mauricio G. C. Resende,et al.  Computational experience with an interior point algorithm on the satisfiability problem , 1990, IPCO.