Computational Logic

ion is modelled by currying: [r IAX : A.M : A,-t B] = A([r, x: A IM : B]) : [r) -t [A] ::} [B]. The interpretation of application makes use of the evaluation map ev : (A ::} B) x A -t B obtained by uncurrying the identity on A ::} B. If r IM : A -t Band r IN: A then [r IM N) = ([r IM), [r IN]} ; ev. We shall now show how PCF can be interpreted in any of the cartesian closed categories C, Ci , Cb and Cib. The interpretation of exp is the flat game N of natural numbers, defined as follows. MN = {q}U{nJnEw} AN(q) OQ AN(n) = PA * I-N q q I-N n for each n ~ = {c,q}U{qnJnEw} Thus N has a single initial question q to which P can respond by playing a natural number. The strategies for N are..L = {c} and [n] = {c, qn} for each number n. These strategies are all innocent and well-bracketed, so we have an interpretation of the numeric constants in each of our cartesian closed categories. The arithmetic operation succ is interpreted using the strategy depicted below.

[1]  Alan Bundy,et al.  The Computer Modelling of Mathematical Reasoning , 1983 .

[2]  Letizia Tanca,et al.  Logic Programming and Databases , 1990, Surveys in Computer Science.

[3]  Martin Davis,et al.  The Prehistory and Early History of Automated Deduction , 1983 .

[4]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[5]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[6]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[7]  Miklós Ajtai,et al.  The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[8]  J. Heijenoort From Frege To Gödel , 1967 .

[9]  Steffen Hölldobler Combining Logic Programming and Equation Solving , 1991, J. Log. Comput..

[10]  Kees Doets,et al.  From logic to logic programming , 1994, Foundations of computing series.

[11]  Chetan R. Murthy Extracting Constructive Content From Classical Proofs , 1990 .

[12]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[13]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..

[14]  P. Hayes The Logic of Frames , 1981 .

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Steffen Hölldobler,et al.  On the Adequateness of the Connection Method , 1993, AAAI.

[17]  David H. D. Warren,et al.  Prolog - the language and its implementation compared with Lisp , 1977, Artificial Intelligence and Programming Languages.

[18]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[19]  Jeffrey D. Ullman,et al.  Principles Of Database And Knowledge-Base Systems , 1979 .

[20]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[21]  Franz Baader,et al.  KRIS: Knowledge Representation and Inference System , 1991, SGAR.

[22]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[23]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[24]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[25]  Bengt Nordström Terminating general recursion , 1988, BIT Comput. Sci. Sect..

[26]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[27]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[28]  P. Smolensky On the proper treatment of connectionism , 1988, Behavioral and Brain Sciences.

[29]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[30]  Melvin Fitting,et al.  Metric Methods Three Examples and a Theorem , 1994, J. Log. Program..

[31]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[32]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[33]  David Maier,et al.  Computing with logic , 1988 .

[34]  Christoph Weidenbach,et al.  On Generating Small Clause Normal Forms , 1998, CADE.

[35]  C. Posthoff,et al.  Einführung in die Komplexitätstheorie , 1992 .

[36]  Masayuki Fujita,et al.  Model Generation Theorem Provers on a Parallel Inference Machine , 1992, FGCS.

[37]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[38]  Christopher Strachey,et al.  Continuations: A Mathematical Semantics for Handling Full Jumps , 2000, High. Order Symb. Comput..

[39]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[40]  Gerald Pfeifer,et al.  The KR System dlv: Progress Report, Comparisons and Benchmarks , 1998, KR.

[41]  Robert A. Kowalski,et al.  Predicate Logic as Programming Language , 1974, IFIP Congress.

[42]  Paolo Mancarella,et al.  Abductive Logic Programming , 1992, LPNMR.

[43]  Gadi Pinkas Logical inference in symmetric connectionist networks , 1992 .

[44]  Saul Amarel,et al.  On representations of problems of reasoning about actions , 1968 .

[45]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[46]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[47]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[48]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[49]  Jean H. Gallier,et al.  SLD-Resolution Methods for Horn Clauses with Equality Based on E-Unification , 1986, SLP.

[50]  Sven-Erik Bornscheuer Rational Models of Normal Logic Programs , 1996, KI.

[51]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Dummett The interpretation of Frege's philosophy , 1981 .

[53]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[54]  Vladimir Lifschitz,et al.  Answer Set Planning (Abstract) , 1999, LPNMR.

[55]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[56]  Bruno Buchberger,et al.  History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..

[57]  M. Arbib Brains, Machines, and Mathematics , 1987, Springer US.

[58]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[59]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[60]  Vladimir Lifschitz,et al.  Pointwise circumscription , 1987 .

[61]  Friedrich L. Bauer Wer erfand den von-Neumann-Rechner? , 1998, Informatik-Spektrum.

[62]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[63]  Rod M. Burstall,et al.  Proving Properties of Programs by Structural Induction , 1969, Comput. J..

[64]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[65]  J. Girard,et al.  Proofs and types , 1989 .

[66]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[67]  Robert A. Kowalski,et al.  The early years of logic programming , 1988, CACM.

[68]  Raymond Reiter On Closed World Data Bases , 1977, Logic and Data Bases.

[69]  Eberhard Wegner,et al.  Tree-structured programs , 1973, CACM.

[70]  Bernhard Nebel,et al.  Terminological Reasoning is Inherently Intractable , 1990, Artif. Intell..

[71]  Victor W. Marek,et al.  Default Reasoning System DeReS , 1996, KR.

[72]  Michael G. Dyer,et al.  High-level Inferencing in a Connectionist Network , 1989 .

[73]  Christoph Walther,et al.  Mathematical induction , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.

[74]  M. Dummett The Philosophical Basis of Intuitionistic Logic , 1975 .

[75]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[76]  Teodor C. Przymusinski,et al.  On the Relationship Between Circumscription and Negation as Failure , 1989, Artif. Intell..

[77]  Krzysztof R. Apt,et al.  Contributions to the Theory of Logic Programming , 1982, JACM.

[78]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[79]  Lenhart K. Schubert Extending The Expressive Power Of Semantic Networks , 1976, IJCAI.

[80]  Drew McDermott,et al.  Default Reasoning, Nonmonotonic Logics, and the Frame Problem , 1986, AAAI.

[81]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[82]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[83]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[84]  John Alan Robinson Computational Logic: Memories of the Past and Challenges for the Future , 2000, Computational Logic.

[85]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[86]  Wayne Snyder,et al.  Basic Paramodulation and Superposition , 1992, CADE.

[87]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[88]  Yves Deville,et al.  Logic Program Synthesis , 1994, J. Log. Program..

[89]  Robert L. Constable,et al.  A Note on Complexity Measures for Inductive Classes in Constructive Type Theory , 1998, Inf. Comput..

[90]  Robert L. Constable,et al.  The Structure of Nuprl’s Type Theory , 1997 .

[91]  Deepak Kapur,et al.  Proof by Consistency , 1987, Artif. Intell..

[92]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[93]  Robert L. Constable,et al.  Constructively formalizing automata theory , 2000, Proof, Language, and Interaction.

[94]  R.L. Constable,et al.  Experience using type theory as a foundation for computer science , 1991, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[95]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[96]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[97]  Robert A. Kowalski,et al.  Algorithm = logic + control , 1979, CACM.

[98]  J. Benthem,et al.  Higher-Order Logic , 2001 .

[99]  Samuel R. Buss,et al.  Size-Depth Tradeoffs for Boolean Fomulae , 1994, Inf. Process. Lett..

[100]  Raúl Rojas,et al.  Theorie der neuronalen Netze , 1993 .

[101]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[102]  Nader H. Bshouty,et al.  Size-depth tradeoffs for algebraic formulae , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[103]  Vladimir Lifschitz,et al.  Frames in the Space of Situations , 1990, Artif. Intell..

[104]  Tony A. Plate,et al.  Holographic reduced representations , 1995, IEEE Trans. Neural Networks.

[105]  Bernhard Nebel,et al.  Representation and Reasoning with Attributive Descriptions , 1990, Sorts and Types in Artificial Intelligence.

[106]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, Symposium on the Theory of Computing.

[107]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[108]  William A. Woods,et al.  What's in a Link: Foundations for Semantic Networks , 1975 .

[109]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[110]  François Fages,et al.  Complete Sets of Unifiers and Matchers in Equational Theories , 1983, CAAP.

[111]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[112]  David S. Touretzky,et al.  A Skeptical Theory of Inheritance in Nonmonotonic Semantic Networks , 1987, Artif. Intell..

[113]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[114]  Chetan R. Murthy An evaluation semantics for classical proofs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[115]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[116]  Robert L. Constable,et al.  The Semantics of Evidence , 1985 .

[117]  Raúl Rojas,et al.  Die Architektur der Rechenmaschinen Z1 und Z3 von Konrad Zuse , 1996, Informatik-Spektrum.

[118]  D. Gabbay A General Theory of Structured Consequence Relations , 1995 .

[119]  Michael Gelfond,et al.  Logic Programs with Classical Negation , 1990, ICLP.

[120]  Hector J. Levesque,et al.  Expressiveness and tractability in knowledge representation and reasoning 1 , 1987, Comput. Intell..

[121]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[122]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[123]  Alan K. Mackworth Constraint Satisfaction , 1985 .