miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity

microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO–miRNA targeting are only partially understood. Here we report a modified AGO HITS-CLIP strategy termed CLEAR (covalent ligation of endogenous Argonaute-bound RNAs)-CLIP, which enriches miRNAs ligated to their endogenous mRNA targets. CLEAR-CLIP mapped ∼130,000 endogenous miRNA–target interactions in mouse brain and ∼40,000 in human hepatoma cells. Motif and structural analysis define expanded pairing rules for over 200 mammalian miRNAs. Most interactions combine seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. At some regulatory sites, this specificity confers distinct silencing functions to miRNA family members with shared seed sequences but divergent 3′-ends. This work provides a means for explicit biochemical identification of miRNA sites in vivo, leading to the discovery that miRNA 3′-end pairing is a general determinant of AGO binding specificity.

[1]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[2]  D. Barford,et al.  Enhancement of the Seed-Target Recognition Step in RNA Silencing by a PIWI/MID Domain Protein , 2009, Molecular cell.

[3]  Jernej Ule,et al.  CLIP: a method for identifying protein-RNA interaction sites in living cells. , 2005, Methods.

[4]  Yongjun Chu,et al.  RNAi Factors are Present and Active in Human Cell Nuclei , 2014, Cell reports.

[5]  H. Soreq,et al.  Global coevolution of human microRNAs and their target genes. , 2014, Molecular biology and evolution.

[6]  Charles M. Rice,et al.  Highly Permissive Cell Lines for Subgenomic and Genomic Hepatitis C Virus RNA Replication , 2002, Journal of Virology.

[7]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[8]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[9]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[11]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[12]  M. Stead,et al.  RNAsnap™: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria , 2012, Nucleic acids research.

[13]  M. Mizoguchi,et al.  MicroRNAs in Human Malignant Gliomas , 2012, Journal of oncology.

[14]  Long-Cheng Li,et al.  Demystifying the nuclear function of Argonaute proteins , 2014, RNA biology.

[15]  M. Blanchette,et al.  Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. , 2013, Genes & development.

[16]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[17]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[18]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[19]  D. Licatalosi,et al.  Integrative Modeling Defines the Nova Splicing-Regulatory Network and Its Combinatorial Controls , 2010, Science.

[20]  Bryan R. Cullen,et al.  MicroRNA Target Site Identification by Integrating Sequence and Binding Information , 2013, Nature Methods.

[21]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[22]  D. Söll,et al.  HSPC117 Is the Essential Subunit of a Human tRNA Splicing Ligase Complex , 2011, Science.

[23]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[24]  S. Chi,et al.  An alternative mode of microRNA target recognition , 2012, Nature Structural &Molecular Biology.

[25]  David Tollervey,et al.  Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast , 2011, Proceedings of the National Academy of Sciences.

[26]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[27]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[28]  Jay Shendure,et al.  Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. , 2012, Molecular cell.

[29]  Joshua L Plotkin,et al.  MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice , 2013, Science.

[30]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[31]  D. Fishman,et al.  microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition , 2014, Nature Communications.

[32]  M. Zavolan,et al.  Identification and consequences of miRNA–target interactions — beyond repression of gene expression , 2014, Nature Reviews Genetics.

[33]  R. Yi,et al.  High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing , 2013, Genome Biology.

[34]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[35]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[36]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[37]  Marcel Schilling,et al.  Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. , 2014, Molecular cell.

[38]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[39]  Sean P Ryder,et al.  Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. , 2011, RNA.

[40]  F. Gao Context-dependent functions of specific microRNAs in neuronal development , 2010, Neural Development.

[41]  Hanah Margalit,et al.  A wide repertoire of miRNA binding sites: prediction and functional implications , 2011, Bioinform..

[42]  Yufei Huang,et al.  Survey of Computational Algorithms for MicroRNA Target Prediction , 2009, Current genomics.

[43]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[44]  P. Pavlidis,et al.  miR-1202: A Primate Specific and Brain Enriched miRNA Involved in Major Depression and Antidepressant Treatment , 2014, Nature Medicine.

[45]  P. Kenny,et al.  MicroRNAs in neuronal function and dysfunction , 2012, Trends in Neurosciences.

[46]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[47]  A. Mele,et al.  Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis , 2014, Nature Protocols.

[48]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[49]  Michael T. McManus,et al.  Expanded RNA-binding activities of mammalian Argonaute 2 , 2009, Nucleic acids research.

[50]  Sebastien M. Weyn-Vanhentenryck,et al.  Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators , 2015, Proceedings of the National Academy of Sciences.

[51]  Paul Zhang,et al.  A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells. , 2007, RNA.

[52]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[53]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[54]  A. Mele,et al.  Hepatitis C Virus RNA Functionally Sequesters miR-122 , 2015, Cell.

[55]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[56]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[57]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[58]  T. Maniatis,et al.  The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. , 2007, Molecular cell.

[59]  Michael Q. Zhang,et al.  HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. , 2014, Cell reports.

[60]  Manu Setty,et al.  Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma , 2012, Molecular systems biology.

[61]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[62]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[63]  Ralf Zimmer,et al.  Widespread context dependency of microRNA-mediated regulation , 2014, Genome research.

[64]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[65]  Michael Q. Zhang,et al.  SNARE Protein Recycling by αSNAP and βSNAP Supports Synaptic Vesicle Priming , 2012, Neuron.

[66]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[67]  S. Viollet,et al.  T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis , 2011, BMC biotechnology.

[68]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[69]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.