Bases of relations in one or several variables: fast algorithms and applications. (Bases de relations en une ou plusieurs variables : algorithmes rapides et applications)
暂无分享,去创建一个
[1] Brigitte Vallée,et al. Computation of Approximate L-th Roots Modulo n and Application to Cryptography , 1988, CRYPTO.
[2] Erich Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems , 1994, ISSAC '94.
[3] Pierrick Gaudry,et al. Sub-cubic change of ordering for Gröbner basis: a probabilistic approach , 2014, ISSAC.
[4] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[5] Emmanuel Thomé,et al. Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.
[6] Éric Schost,et al. Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality , 2003, Applicable Algebra in Engineering, Communication and Computing.
[7] Maria Grazia Marinari,et al. Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.
[8] Claude-Pierre Jeannerod,et al. On Matrices With Displacement Structure: Generalized Operators and Faster Algorithms , 2017, SIAM J. Matrix Anal. Appl..
[9] Patrick Fitzpatrick,et al. A Gröbner basis technique for Padé approximation , 1992 .
[10] Patrick Fitzpatrick. On the key equation , 1995, IEEE Trans. Inf. Theory.
[11] Erich Kaltofen,et al. Parallel algorithms for matrix normal forms , 1990 .
[12] Johan Sebastian Rosenkilde Nielsen. Fast Kötter-Nielsen-Høholdt Interpolation in the Guruswami-Sudan Algorithm , 2014, ArXiv.
[13] Johan Sebastian Rosenkilde Nielsen,et al. List Decoding of Algebraic Codes , 2013 .
[14] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[15] Pascal Giorgi,et al. Online order basis algorithm and its impact on the block Wiedemann algorithm , 2014, ISSAC.
[16] V. Pan. Structured Matrices and Polynomials , 2001 .
[17] James B. Shearer,et al. A Property of Euclid’s Algorithm and an Application to Padé Approximation , 1978 .
[18] Arne Storjohann. Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.
[19] Venkatesan Guruswami,et al. Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.
[20] George Labahn,et al. Efficient algorithms for order basis computation , 2012, J. Symb. Comput..
[21] Martin Ziegler,et al. Fast Multipoint Evaluation of Bivariate Polynomials , 2004, ESA.
[22] Keith O. Geddes. Symbolic Computation of Padé Approximants , 1979, TOMS.
[23] Michael Alekhnovich. Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2005, IEEE Transactions on Information Theory.
[24] Peter Trifonov. Efficient Interpolation in the Guruswami–Sudan Algorithm , 2010, IEEE Transactions on Information Theory.
[25] Kwankyu Lee,et al. An Interpolation Algorithm using Gröbner Bases for Soft-Decision Decoding of Reed-Solomon Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[26] Nick Howgrave-Graham,et al. Approximate Integer Common Divisors , 2001, CaLC.
[27] Jean-Charles Faugère,et al. Polynomial Systems Solving by Fast Linear Algebra , 2013, ArXiv.
[28] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[29] B. Anderson,et al. Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .
[30] Dan Boneh,et al. Finding smooth integers in short intervals using CRT decoding , 2000, STOC '00.
[31] T. Muldersa,et al. On lattice reduction for polynomial matrices , 2003 .
[32] George Labahn,et al. Computing column bases of polynomial matrices , 2013, ISSAC '13.
[33] Bruno Buchberger,et al. The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.
[34] Cornelis Praagman,et al. A new method for computing a column reduced polynomial matrix , 1988 .
[35] Gilles Villard,et al. On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[36] James Lee Hafner,et al. Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.
[37] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[38] Elwyn R. Berlekamp,et al. Algebraic Coding Theory: Revised Edition , 2015 .
[39] George Labahn,et al. Computing minimal nullspace bases , 2012, ISSAC.
[40] Stefan Paszkowski,et al. Recurrence relations in Padé-Hermite approximation , 1987 .
[41] Ian Goldberg,et al. Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.
[42] Madhu Sudan,et al. Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..
[43] George Labahn,et al. Unimodular completion of polynomial matrices , 2014, ISSAC.
[44] Jean-Charles Faugère,et al. Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences , 2015, J. Symb. Comput..
[45] Unjeng Cheng. On the continued fraction and Berlekamp's algorithm , 1984, IEEE Trans. Inf. Theory.
[46] Marina Weber,et al. Using Algebraic Geometry , 2016 .
[47] Johannes Middeke,et al. A computational view on normal forms of matrices of Ore polynomials , 2012, ACCA.
[48] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[49] Adhemar Bultheel,et al. A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.
[50] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[51] G. A. Baker. Essentials of Padé approximants , 1975 .
[52] Bruno Buchberger,et al. A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.
[53] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[54] George Labahn,et al. Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..
[55] H. O'Keeffe,et al. Gröbner basis solutions of constrained interpolation problems , 2002 .
[56] Jean-Charles Faugère,et al. Guessing Linear Recurrence Relations of Sequence Tuplesand P-recursive Sequences with Linear Algebra , 2016, ISSAC.
[57] Yingquan Wu,et al. On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes , 2012, IEEE Transactions on Information Theory.
[58] François Le Gall,et al. Powers of tensors and fast matrix multiplication , 2014, ISSAC.
[59] F. Gustavson,et al. Fast algorithms for rational Hermite approximation and solution of Toeplitz systems , 1979 .
[60] Peter Beelen,et al. Key equations for list decoding of Reed-Solomon codes and how to solve them , 2010, J. Symb. Comput..
[61] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[62] Vincent Neiger,et al. Fast Computation of Shifted Popov Forms of Polynomial Matrices via Systems of Modular Polynomial Equations , 2016, ISSAC.
[63] Yuan Zhou. Introduction to Coding Theory , 2010 .
[64] Arne Storjohann,et al. High-order lifting and integrality certification , 2003, J. Symb. Comput..
[65] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[66] Yingquan Wu,et al. New List Decoding Algorithms for Reed–Solomon and BCH Codes , 2007, IEEE Transactions on Information Theory.
[67] Richard J. Lipton,et al. A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..
[68] Johan Håstad,et al. On Using RSA with Low Exponent in a Public Key Network , 1985, CRYPTO.
[69] H. Nussbaumer,et al. Fast polynomial transform algorithms for digital convolution , 1980 .
[70] Don Coppersmith,et al. Finding a Small Root of a Univariate Modular Equation , 1996, EUROCRYPT.
[71] H. Jager,et al. A Multidimensional Generalization of the Padé Table. II , 1964 .
[72] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[73] Philippe Gaborit,et al. Improved Hermite multivariate polynomial interpolation , 2006, 2006 IEEE International Symposium on Information Theory.
[74] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[75] K. Mahler,et al. On the approximation of logarithms of algebraic numbers , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[76] George Labahn,et al. Fast and deterministic computation of the determinant of a polynomial matrix , 2014, ArXiv.
[77] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[78] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[79] Gilles Villard,et al. Computing the rank and a small nullspace basis of a polynomial matrix , 2005, ISSAC.
[80] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[81] Chenqi Mou,et al. Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices , 2011, ISSAC '11.
[82] Claude-Pierre Jeannerod,et al. Solving structured linear systems of large displacement rank , 2006, ACCA.
[83] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[84] Alexander Vardy,et al. A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[85] Helmut Hasse. Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. , 1936 .
[86] Éric Schost,et al. Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..
[87] Costas S. Iliopoulos,et al. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..
[88] George Labahn,et al. Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.
[89] J. Hopcroft,et al. Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .
[90] Daniel J. Bernstein,et al. Simplified High-Speed High-Distance List Decoding for Alternant Codes , 2011, PQCrypto.
[91] Soumojit Sarkar,et al. Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x] , 2012, J. Symb. Comput..
[92] Shuhong Gao,et al. Gröbner bases and generalized Padé approximation , 2006, Math. Comput..
[93] Ron M. Roth,et al. Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.
[94] Patrick Fitzpatrick,et al. Gröbner basis approach to list decoding of algebraic geometry codes , 2007, Applicable Algebra in Engineering, Communication and Computing.
[95] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[96] John Coates. On the algebraic approximation of functions. III , 1966 .
[97] George Labahn,et al. A deterministic algorithm for inverting a polynomial matrix , 2015, J. Complex..
[98] Bernhard Beckermann,et al. A reliable method for computing M-Pade´ approximants on arbitrary staircases , 1992 .
[99] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[100] Gui Liang Feng,et al. A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.
[101] Walter Keller-Gehrig,et al. Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..
[102] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[103] A. V. Sergeyev. A recursive algorithm for Pade´-Hermite approximations , 1987 .
[104] Jean-René Reinhard. Algorithme LLL polynomial et applications , 2003 .
[105] George Labahn,et al. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix , 2017, J. Complex..
[106] Ralf Koetter. Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996, IEEE Trans. Inf. Theory.
[107] Gilles Villard,et al. Computing Popov and Hermite forms of polynomial matrices , 1996, ISSAC '96.
[108] Arne Storjohann,et al. Computing hermite forms of polynomial matrices , 2011, ISSAC '11.
[109] R. McEliece. The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .
[110] Claude-Pierre Jeannerod,et al. Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts , 2016, ISSAC.
[111] Arne Storjohann. High-order lifting , 2002, ISSAC '02.
[112] Emmanuel Thomé,et al. Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..
[113] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[114] George Labahn,et al. Shifted normal forms of polynomial matrices , 1999, ISSAC '99.
[115] Nadia Heninger,et al. Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding , 2010, Adv. Math. Commun..
[116] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[117] V. Popov. Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .
[118] Masao Kasahara,et al. A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..
[119] George Labahn,et al. A fast, deterministic algorithm for computing a Hermite Normal Form of a polynomial matrix , 2016, ArXiv.
[120] Robert A. Scholtz,et al. Continued fractions and Berlekamp's algorithm , 1979, IEEE Trans. Inf. Theory.
[121] Guido Claessens. A new look at the Padé table and the different methods for computing its elements , 1975 .
[122] Alexander Zeh,et al. Algebraic soft- and hard-decision decoding of generalized reed-solomon and cyclic codes , 2013 .
[123] K. Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II. , 2022 .
[124] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[125] W. H. Mills. Continued fractions and linear recurrences , 1975 .
[126] Arne Storjohann,et al. Algorithms for Simultaneous Padé Approximations , 2016, ISSAC.
[127] Martin Kreuzer,et al. Computational Commutative Algebra 1 , 2000 .
[128] George Labahn,et al. Normal forms for general polynomial matrices , 2006, J. Symb. Comput..
[129] Soumojit Sarkar,et al. Normalization of row reduced matrices , 2011, ISSAC '11.
[130] A. Melman. Numerical solution of a secular equation , 1995 .
[131] Claude-Pierre Jeannerod,et al. Computing minimal interpolation bases , 2015, J. Symb. Comput..
[132] Amin Shokrollahi,et al. A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.
[133] Shojiro Sakata,et al. Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..
[134] Victor Shoup,et al. A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic , 1991, ISSAC '91.
[135] Daniel Augot,et al. An Interpolation Procedure for List Decoding Reed–Solomon Codes Based on Generalized Key Equations , 2011, IEEE Transactions on Information Theory.
[136] Guillermo Moreno-Socías,et al. Degrevlex Gröbner bases of generic complete intersections , 2003 .
[137] Martin Morf,et al. Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.
[138] W. Wolovich. Linear multivariable systems , 1974 .
[139] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[140] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[141] Teo Mora. The FGLM Problem and Möller's Algorithm on Zero-dimensional Ideals , 2009, Gröbner Bases, Coding, and Cryptography.
[142] Peter Beelen,et al. Interpolation and List Decoding of Algebraic Codes , 2010 .
[143] L. O'carroll. AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .
[144] Claude-Pierre Jeannerod,et al. Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..
[145] Wei Zhou,et al. Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .
[146] Somi Gupta,et al. Hermite Forms of Polynomial Matrices , 2011 .
[147] Nadia Heninger,et al. Approximate common divisors via lattices , 2011, IACR Cryptol. ePrint Arch..
[148] P. Busse. MULTIVARIATE LIST DECODING OF EVALUATION CODES WITH A GRÖBNER BASIS PERSPECTIVE , 2008 .
[149] C. Hermite. Sur la généralisation des fractions continues algébriques , 1893 .
[150] Alexander Vardy,et al. The Re-Encoding Transformation in Algebraic List-Decoding of Reed–Solomon Codes , 2011, IEEE Transactions on Information Theory.
[151] Alexander Vardy,et al. Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.
[152] Kwankyu Lee,et al. List decoding of Reed-Solomon codes from a Gröbner basis perspective , 2008, J. Symb. Comput..
[153] Adhemar Bultheel,et al. The computation of non-perfect Padé-Hermite approximants , 2005, Numerical Algorithms.
[154] Stanley Cabay,et al. Algebraic Computations of Scaled Padé Fractions , 1986, SIAM J. Comput..
[155] Oscar H. Ibarra,et al. A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.
[156] Claude-Pierre Jeannerod,et al. Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations , 2014, IEEE Transactions on Information Theory.
[157] Christopher Umans,et al. Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..
[158] Alexander Vardy,et al. Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[159] C. Hermite. Sur l'introduction des variables continues dans la théorie des nombres. , 2022 .
[160] Chenqi Mou,et al. Sparse FGLM algorithms , 2013, J. Symb. Comput..
[161] Robert T. Moenck,et al. Fast computation of GCDs , 1973, STOC.
[162] Keith Oliver Geddes. Algorithms for analytic approximation (to a formal power-series). , 1973 .
[163] Lorenzo Robbiano,et al. On the Theory of Graded Structures , 1986, J. Symb. Comput..
[164] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[165] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[166] Patrick Fitzpatrick. Solving a Multivariable Congruence by Change of Term Order , 1997, J. Symb. Comput..
[167] Tom Høholdt,et al. Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .
[168] Shojiro Sakata,et al. Extension of the Berlekamp-Massey Algorithm to N Dimensions , 1990, Inf. Comput..
[169] Jean Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.
[170] G Moreno-Socias,et al. Autour De La Fonction De Hilbert-samuel (Escaliers D'ideaux Polynomiaux) , 1991 .