Bases of relations in one or several variables: fast algorithms and applications. (Bases de relations en une ou plusieurs variables : algorithmes rapides et applications)

In this thesis, we study algorithms for a problem of finding relations in one or several variables. It generalizes that of computing a solution to a system of linear modular equations over a polynomial ring, including in particular the computation of Hermite-Pade approximants and bivariate interpolants. Rather than a single solution, we aim at computing generators of the solution set which have good properties. Precisely, the input of our problem consists of a finite-dimensional module given by the action of the variables on its elements, and of some elements of this module; the goal is to compute a Grobner basis of the module of syzygies between these elements. In terms of linear algebra, the input describes a matrix with a type of Krylov structure, and the goal is to compute a compact representation of a basis of the nullspace of this matrix. We propose several algorithms in accordance with the structure of the multiplication matrices which specify the action of the variables. In the case of a Jordan matrix, we accelerate the computation of multivariate interpolants under degree constraints; our result for a Frobenius matrix leads to a faster algorithm for computing normal forms of univariate polynomial matrices. In the case of several dense matrices, we accelerate the change of monomial order for Grobner bases of multivariate zero-dimensional ideals.

[1]  Brigitte Vallée,et al.  Computation of Approximate L-th Roots Modulo n and Application to Cryptography , 1988, CRYPTO.

[2]  Erich Kaltofen Asymptotically fast solution of Toeplitz-like singular linear systems , 1994, ISSAC '94.

[3]  Pierrick Gaudry,et al.  Sub-cubic change of ordering for Gröbner basis: a probabilistic approach , 2014, ISSAC.

[4]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[5]  Emmanuel Thomé,et al.  Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.

[6]  Éric Schost,et al.  Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality , 2003, Applicable Algebra in Engineering, Communication and Computing.

[7]  Maria Grazia Marinari,et al.  Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.

[8]  Claude-Pierre Jeannerod,et al.  On Matrices With Displacement Structure: Generalized Operators and Faster Algorithms , 2017, SIAM J. Matrix Anal. Appl..

[9]  Patrick Fitzpatrick,et al.  A Gröbner basis technique for Padé approximation , 1992 .

[10]  Patrick Fitzpatrick On the key equation , 1995, IEEE Trans. Inf. Theory.

[11]  Erich Kaltofen,et al.  Parallel algorithms for matrix normal forms , 1990 .

[12]  Johan Sebastian Rosenkilde Nielsen Fast Kötter-Nielsen-Høholdt Interpolation in the Guruswami-Sudan Algorithm , 2014, ArXiv.

[13]  Johan Sebastian Rosenkilde Nielsen,et al.  List Decoding of Algebraic Codes , 2013 .

[14]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[15]  Pascal Giorgi,et al.  Online order basis algorithm and its impact on the block Wiedemann algorithm , 2014, ISSAC.

[16]  V. Pan Structured Matrices and Polynomials , 2001 .

[17]  James B. Shearer,et al.  A Property of Euclid’s Algorithm and an Application to Padé Approximation , 1978 .

[18]  Arne Storjohann Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.

[19]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[20]  George Labahn,et al.  Efficient algorithms for order basis computation , 2012, J. Symb. Comput..

[21]  Martin Ziegler,et al.  Fast Multipoint Evaluation of Bivariate Polynomials , 2004, ESA.

[22]  Keith O. Geddes Symbolic Computation of Padé Approximants , 1979, TOMS.

[23]  Michael Alekhnovich Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2005, IEEE Transactions on Information Theory.

[24]  Peter Trifonov Efficient Interpolation in the Guruswami–Sudan Algorithm , 2010, IEEE Transactions on Information Theory.

[25]  Kwankyu Lee,et al.  An Interpolation Algorithm using Gröbner Bases for Soft-Decision Decoding of Reed-Solomon Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[26]  Nick Howgrave-Graham,et al.  Approximate Integer Common Divisors , 2001, CaLC.

[27]  Jean-Charles Faugère,et al.  Polynomial Systems Solving by Fast Linear Algebra , 2013, ArXiv.

[28]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[29]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[30]  Dan Boneh,et al.  Finding smooth integers in short intervals using CRT decoding , 2000, STOC '00.

[31]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[32]  George Labahn,et al.  Computing column bases of polynomial matrices , 2013, ISSAC '13.

[33]  Bruno Buchberger,et al.  The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.

[34]  Cornelis Praagman,et al.  A new method for computing a column reduced polynomial matrix , 1988 .

[35]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[36]  James Lee Hafner,et al.  Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.

[37]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[38]  Elwyn R. Berlekamp,et al.  Algebraic Coding Theory: Revised Edition , 2015 .

[39]  George Labahn,et al.  Computing minimal nullspace bases , 2012, ISSAC.

[40]  Stefan Paszkowski,et al.  Recurrence relations in Padé-Hermite approximation , 1987 .

[41]  Ian Goldberg,et al.  Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.

[42]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[43]  George Labahn,et al.  Unimodular completion of polynomial matrices , 2014, ISSAC.

[44]  Jean-Charles Faugère,et al.  Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences , 2015, J. Symb. Comput..

[45]  Unjeng Cheng On the continued fraction and Berlekamp's algorithm , 1984, IEEE Trans. Inf. Theory.

[46]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[47]  Johannes Middeke,et al.  A computational view on normal forms of matrices of Ore polynomials , 2012, ACCA.

[48]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[49]  Adhemar Bultheel,et al.  A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.

[50]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[51]  G. A. Baker Essentials of Padé approximants , 1975 .

[52]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[53]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[54]  George Labahn,et al.  Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..

[55]  H. O'Keeffe,et al.  Gröbner basis solutions of constrained interpolation problems , 2002 .

[56]  Jean-Charles Faugère,et al.  Guessing Linear Recurrence Relations of Sequence Tuplesand P-recursive Sequences with Linear Algebra , 2016, ISSAC.

[57]  Yingquan Wu,et al.  On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes , 2012, IEEE Transactions on Information Theory.

[58]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[59]  F. Gustavson,et al.  Fast algorithms for rational Hermite approximation and solution of Toeplitz systems , 1979 .

[60]  Peter Beelen,et al.  Key equations for list decoding of Reed-Solomon codes and how to solve them , 2010, J. Symb. Comput..

[61]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[62]  Vincent Neiger,et al.  Fast Computation of Shifted Popov Forms of Polynomial Matrices via Systems of Modular Polynomial Equations , 2016, ISSAC.

[63]  Yuan Zhou Introduction to Coding Theory , 2010 .

[64]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..

[65]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[66]  Yingquan Wu,et al.  New List Decoding Algorithms for Reed–Solomon and BCH Codes , 2007, IEEE Transactions on Information Theory.

[67]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[68]  Johan Håstad,et al.  On Using RSA with Low Exponent in a Public Key Network , 1985, CRYPTO.

[69]  H. Nussbaumer,et al.  Fast polynomial transform algorithms for digital convolution , 1980 .

[70]  Don Coppersmith,et al.  Finding a Small Root of a Univariate Modular Equation , 1996, EUROCRYPT.

[71]  H. Jager,et al.  A Multidimensional Generalization of the Padé Table. II , 1964 .

[72]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[73]  Philippe Gaborit,et al.  Improved Hermite multivariate polynomial interpolation , 2006, 2006 IEEE International Symposium on Information Theory.

[74]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[75]  K. Mahler,et al.  On the approximation of logarithms of algebraic numbers , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[76]  George Labahn,et al.  Fast and deterministic computation of the determinant of a polynomial matrix , 2014, ArXiv.

[77]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[78]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[79]  Gilles Villard,et al.  Computing the rank and a small nullspace basis of a polynomial matrix , 2005, ISSAC.

[80]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[81]  Chenqi Mou,et al.  Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices , 2011, ISSAC '11.

[82]  Claude-Pierre Jeannerod,et al.  Solving structured linear systems of large displacement rank , 2006, ACCA.

[83]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[84]  Alexander Vardy,et al.  A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[85]  Helmut Hasse Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. , 1936 .

[86]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[87]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[88]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[89]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[90]  Daniel J. Bernstein,et al.  Simplified High-Speed High-Distance List Decoding for Alternant Codes , 2011, PQCrypto.

[91]  Soumojit Sarkar,et al.  Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x] , 2012, J. Symb. Comput..

[92]  Shuhong Gao,et al.  Gröbner bases and generalized Padé approximation , 2006, Math. Comput..

[93]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[94]  Patrick Fitzpatrick,et al.  Gröbner basis approach to list decoding of algebraic geometry codes , 2007, Applicable Algebra in Engineering, Communication and Computing.

[95]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[96]  John Coates On the algebraic approximation of functions. III , 1966 .

[97]  George Labahn,et al.  A deterministic algorithm for inverting a polynomial matrix , 2015, J. Complex..

[98]  Bernhard Beckermann,et al.  A reliable method for computing M-Pade´ approximants on arbitrary staircases , 1992 .

[99]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[100]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[101]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[102]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[103]  A. V. Sergeyev A recursive algorithm for Pade´-Hermite approximations , 1987 .

[104]  Jean-René Reinhard Algorithme LLL polynomial et applications , 2003 .

[105]  George Labahn,et al.  Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix , 2017, J. Complex..

[106]  Ralf Koetter Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996, IEEE Trans. Inf. Theory.

[107]  Gilles Villard,et al.  Computing Popov and Hermite forms of polynomial matrices , 1996, ISSAC '96.

[108]  Arne Storjohann,et al.  Computing hermite forms of polynomial matrices , 2011, ISSAC '11.

[109]  R. McEliece The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .

[110]  Claude-Pierre Jeannerod,et al.  Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts , 2016, ISSAC.

[111]  Arne Storjohann High-order lifting , 2002, ISSAC '02.

[112]  Emmanuel Thomé,et al.  Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..

[113]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[114]  George Labahn,et al.  Shifted normal forms of polynomial matrices , 1999, ISSAC '99.

[115]  Nadia Heninger,et al.  Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding , 2010, Adv. Math. Commun..

[116]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[117]  V. Popov Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .

[118]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[119]  George Labahn,et al.  A fast, deterministic algorithm for computing a Hermite Normal Form of a polynomial matrix , 2016, ArXiv.

[120]  Robert A. Scholtz,et al.  Continued fractions and Berlekamp's algorithm , 1979, IEEE Trans. Inf. Theory.

[121]  Guido Claessens A new look at the Padé table and the different methods for computing its elements , 1975 .

[122]  Alexander Zeh,et al.  Algebraic soft- and hard-decision decoding of generalized reed-solomon and cyclic codes , 2013 .

[123]  K. Mahler Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II. , 2022 .

[124]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[125]  W. H. Mills Continued fractions and linear recurrences , 1975 .

[126]  Arne Storjohann,et al.  Algorithms for Simultaneous Padé Approximations , 2016, ISSAC.

[127]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[128]  George Labahn,et al.  Normal forms for general polynomial matrices , 2006, J. Symb. Comput..

[129]  Soumojit Sarkar,et al.  Normalization of row reduced matrices , 2011, ISSAC '11.

[130]  A. Melman Numerical solution of a secular equation , 1995 .

[131]  Claude-Pierre Jeannerod,et al.  Computing minimal interpolation bases , 2015, J. Symb. Comput..

[132]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[133]  Shojiro Sakata,et al.  Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..

[134]  Victor Shoup,et al.  A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic , 1991, ISSAC '91.

[135]  Daniel Augot,et al.  An Interpolation Procedure for List Decoding Reed–Solomon Codes Based on Generalized Key Equations , 2011, IEEE Transactions on Information Theory.

[136]  Guillermo Moreno-Socías,et al.  Degrevlex Gröbner bases of generic complete intersections , 2003 .

[137]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[138]  W. Wolovich Linear multivariable systems , 1974 .

[139]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[140]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[141]  Teo Mora The FGLM Problem and Möller's Algorithm on Zero-dimensional Ideals , 2009, Gröbner Bases, Coding, and Cryptography.

[142]  Peter Beelen,et al.  Interpolation and List Decoding of Algebraic Codes , 2010 .

[143]  L. O'carroll AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .

[144]  Claude-Pierre Jeannerod,et al.  Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..

[145]  Wei Zhou,et al.  Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .

[146]  Somi Gupta,et al.  Hermite Forms of Polynomial Matrices , 2011 .

[147]  Nadia Heninger,et al.  Approximate common divisors via lattices , 2011, IACR Cryptol. ePrint Arch..

[148]  P. Busse MULTIVARIATE LIST DECODING OF EVALUATION CODES WITH A GRÖBNER BASIS PERSPECTIVE , 2008 .

[149]  C. Hermite Sur la généralisation des fractions continues algébriques , 1893 .

[150]  Alexander Vardy,et al.  The Re-Encoding Transformation in Algebraic List-Decoding of Reed–Solomon Codes , 2011, IEEE Transactions on Information Theory.

[151]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[152]  Kwankyu Lee,et al.  List decoding of Reed-Solomon codes from a Gröbner basis perspective , 2008, J. Symb. Comput..

[153]  Adhemar Bultheel,et al.  The computation of non-perfect Padé-Hermite approximants , 2005, Numerical Algorithms.

[154]  Stanley Cabay,et al.  Algebraic Computations of Scaled Padé Fractions , 1986, SIAM J. Comput..

[155]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[156]  Claude-Pierre Jeannerod,et al.  Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations , 2014, IEEE Transactions on Information Theory.

[157]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[158]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[159]  C. Hermite Sur l'introduction des variables continues dans la théorie des nombres. , 2022 .

[160]  Chenqi Mou,et al.  Sparse FGLM algorithms , 2013, J. Symb. Comput..

[161]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[162]  Keith Oliver Geddes Algorithms for analytic approximation (to a formal power-series). , 1973 .

[163]  Lorenzo Robbiano,et al.  On the Theory of Graded Structures , 1986, J. Symb. Comput..

[164]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[165]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[166]  Patrick Fitzpatrick Solving a Multivariable Congruence by Change of Term Order , 1997, J. Symb. Comput..

[167]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[168]  Shojiro Sakata,et al.  Extension of the Berlekamp-Massey Algorithm to N Dimensions , 1990, Inf. Comput..

[169]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[170]  G Moreno-Socias,et al.  Autour De La Fonction De Hilbert-samuel (Escaliers D'ideaux Polynomiaux) , 1991 .