Global convergence of a robust filter SQP algorithm

We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian-Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.

[1]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[2]  Guanglu Zhou,et al.  A Modified SQP Method and Its Global Convergence , 1997, J. Glob. Optim..

[3]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[4]  Ju-Liang Zhang,et al.  A Modified SQP Method with Nonmonotone Linesearch Technique , 2001, J. Glob. Optim..

[5]  Benedetta Morini,et al.  Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities , 2009 .

[6]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[7]  Stefania Bellavia,et al.  STRSCNE: A Scaled Trust-Region Solver for Constrained Nonlinear Equations , 2004, Comput. Optim. Appl..

[8]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[9]  Chungen Shen,et al.  Global convergence of a tri-dimensional filter SQP algorithm based on the line search method , 2009 .

[10]  Jorge Nocedal,et al.  Infeasibility Detection and SQP Methods for Nonlinear Optimization , 2010, SIAM J. Optim..

[11]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[12]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[13]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[14]  Jorge Nocedal,et al.  Steering exact penalty methods for nonlinear programming , 2008, Optim. Methods Softw..

[15]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[16]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[17]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[18]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[19]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[20]  José Mario Martínez,et al.  Augmented Lagrangian methods under the constant positive linear dependence constraint qualification , 2007, Math. Program..

[21]  James V. Burke,et al.  A robust sequential quadratic programming method , 1989, Math. Program..

[22]  Stefan Ulbrich On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..

[23]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[24]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[25]  Jin-Bao Jian,et al.  A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming , 2008, Eur. J. Oper. Res..