Thalamus plays a central role in ongoing cortical functioning

Several challenges to current views of thalamocortical processing are offered here. Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver and modulator. We suggest that driver inputs are the main conduits of information and that modulator inputs modify how driver inputs are processed. Different driver sources reveal two types of thalamic relays: first order relays receive subcortical driver input (for example, retinal input to the lateral geniculate nucleus), whereas higher order relays (for example, pulvinar) receive driver input from layer 5 of cortex and participate in cortico-thalamo-cortical (or transthalamic) circuits. These transthalamic circuits represent an unappreciated aspect of cortical functioning, which I discuss here. Direct corticocortical connections are often paralleled by transthalamic ones. Furthermore, driver inputs to thalamus, both first and higher order, typically arrive via branching axons, and the transthalamic branch often innervates subcortical motor centers, leading to the suggestion that these inputs to thalamus serve as efference copies.

[1]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[2]  R. Guillery Degeneration in the hypothalamic connexions of the albino rat. , 1957, Journal of anatomy.

[3]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[4]  D. Lindsley,et al.  Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. , 1972, Experimental neurology.

[5]  L. Means,et al.  Effects of dorsomedial thalamic lesions on spontaneous alternation, maze, activity and runway performance in the rat. , 1974, Physiology & behavior.

[6]  D H Hubel,et al.  Brain mechanisms of vision. , 1979, Scientific American.

[7]  T. Tsumoto,et al.  Three groups of cortico‐geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex , 1980, The Journal of comparative neurology.

[8]  I. Thompson,et al.  Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique , 1980, Neuroscience Letters.

[9]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[10]  R. Linden,et al.  Massive retinotectal projection in rats , 1983, Brain Research.

[11]  M. Bull,et al.  Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. , 1984, Somatosensory research.

[12]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .

[13]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Y. Shinoda,et al.  Morphology of single neurones in the cerebello-rubrospinal system , 1988, Behavioural Brain Research.

[15]  N. Isu,et al.  Extracellular recording of vestibulo-thalamic neurons projecting to the spinal cord in the cat , 1989, Neuroscience Letters.

[16]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[17]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[18]  M. Deschenes,et al.  Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons , 1994, Brain Research.

[19]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[20]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[21]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[22]  S. Sherman,et al.  Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin , 1995, The Journal of comparative neurology.

[23]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[24]  S. T. Sakai,et al.  Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study , 1996, The Journal of comparative neurology.

[25]  E. Seidemann,et al.  Temporal gating of neural signals during performance of a visual discrimination task , 1998, Nature.

[26]  J. Crabtree,et al.  A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus , 1998, Nature Neuroscience.

[27]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[29]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[30]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[31]  I. Feinberg,et al.  Schizophrenia – a disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness , 1999, British Journal of Psychiatry.

[32]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[33]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[34]  D. Tank,et al.  Action potentials reliably invade axonal arbors of rat neocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Deschenes,et al.  Thalamic projections from the whisker‐sensitive regions of the spinal trigeminal complex in the rat , 2000, The Journal of comparative neurology.

[36]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[37]  C. Casanova,et al.  Higher-order motion processing in the pulvinar. , 2001, Progress in brain research.

[38]  C. Casanova,et al.  Chapter 5 Higher-order motion processing in the pulvinar , 2001 .

[39]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[40]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[41]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Bickford,et al.  Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus , 2003, The Journal of comparative neurology.

[43]  G. Shepherd,et al.  Single‐axon action potentials in the rat hippocampal cortex , 2003, The Journal of physiology.

[44]  Henry J. Alitto,et al.  Corticothalamic feedback and sensory processing , 2003, Current Opinion in Neurobiology.

[45]  I. Reichova,et al.  Somatosensory corticothalamic projections: distinguishing drivers from modulators. , 2004, Journal of neurophysiology.

[46]  C. Casanova Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat's lateralis posterior-pulvinar complex: comparison with cortico-tectal cells , 2004, Experimental Brain Research.

[47]  S. Matsuo,et al.  Ascending projections of posterior canal-activated excitatory and inhibitory secondary vestibular neurons to the mesodiencephalon in cats , 2004, Experimental Brain Research.

[48]  M. Sirota,et al.  Three Channels of Corticothalamic Communication during Locomotion , 2005, The Journal of Neuroscience.

[49]  D. Fitzpatrick,et al.  Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. , 2005, Journal of neurophysiology.

[50]  F. Chauveau,et al.  Effects of ibotenic acid lesions of the mediodorsal thalamus on memory: relationship with emotional processes in mice , 2005, Behavioural Brain Research.

[51]  A. Graefe Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln , 1854, Archiv für Ophthalmologie.

[52]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[53]  S. Sherman,et al.  Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. , 2008, Journal of neurophysiology.

[54]  S. Sherman,et al.  Topography and physiology of ascending streams in the auditory tectothalamic pathway , 2009, Proceedings of the National Academy of Sciences.

[55]  R. Andersen,et al.  Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits , 2009, Neuron.

[56]  S. Sherman,et al.  Glutamatergic inhibition in sensory neocortex. , 2009, Cerebral cortex.

[57]  W. Usrey,et al.  Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey , 2009, Neuron.

[58]  S. Sherman,et al.  Synaptic Properties of the Mammillary and Cortical Afferents to the Anterodorsal Thalamic Nucleus in the Mouse , 2009, The Journal of Neuroscience.

[59]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[60]  S. Sherman,et al.  Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. , 2010, Cerebral cortex.

[61]  D. Wolpert,et al.  Motor learning , 2010, Current Biology.

[62]  R. Wurtz,et al.  Functional Identification of a Pulvinar Path from Superior Colliculus to Cortical Area MT , 2010, The Journal of Neuroscience.

[63]  S. Sherman,et al.  The corticothalamocortical circuit drives higher-order cortex in the mouse , 2009, Nature Neuroscience.

[64]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[65]  E. Kuramoto,et al.  Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei , 2011, The European journal of neuroscience.

[66]  S. Sherman,et al.  Synaptic Properties of Corticocortical Connections between the Primary and Secondary Visual Cortical Areas in the Mouse , 2011, The Journal of Neuroscience.

[67]  S. Sherman,et al.  Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse , 2011, Proceedings of the National Academy of Sciences.

[68]  S. Sherman,et al.  Synaptic Properties of Thalamic Input to the Subgranular Layers of Primary Somatosensory and Auditory Cortices in the Mouse , 2011, The Journal of Neuroscience.

[69]  S. Sherman,et al.  Synaptic properties of connections between the primary and secondary auditory cortices in mice. , 2011, Cerebral cortex.

[70]  Nathan J Hall,et al.  Remapping for visual stability , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Charles C Lee,et al.  Wiring of Divergent Networks in the Central Auditory System , 2011, Front. Neuroanat..

[72]  S. Sherman,et al.  Modulatory Effects of Metabotropic Glutamate Receptors on Local Cortical Circuits , 2012, The Journal of Neuroscience.

[73]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[74]  S. Sherman,et al.  Intrinsic modulators of auditory thalamocortical transmission , 2012, Hearing Research.

[75]  S. Sherman,et al.  Intracortical convergence of layer 6 neurons , 2012, Neuroreport.

[76]  S. Sherman,et al.  Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices , 2012, The Journal of comparative neurology.

[77]  T. Kita,et al.  The Subthalamic Nucleus Is One of Multiple Innervation Sites for Long-Range Corticofugal Axons: A Single-Axon Tracing Study in the Rat , 2012, The Journal of Neuroscience.

[78]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[79]  Laura K. Pynn,et al.  The function of efference copy signals: Implications for symptoms of schizophrenia , 2013, Vision Research.

[80]  S. Sherman,et al.  A modulatory effect of the feedback from higher visual areas to V1 in the mouse. , 2013, Journal of neurophysiology.

[81]  S. Sherman,et al.  Activation of both Group I and Group II metabotropic glutamatergic receptors suppress retinogeniculate transmission , 2013, Neuroscience.

[82]  A. Konnerth,et al.  Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo , 2013, Neuron.

[83]  S. Sherman,et al.  The Function of Metabotropic Glutamate Receptors in Thalamus and Cortex , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[84]  Vanessa A. Palzes,et al.  Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. , 2014, Schizophrenia bulletin.

[85]  S. Sherman,et al.  Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse cortex. , 2014, Journal of neurophysiology.

[86]  Rebecca A. Mease,et al.  Convergence of Cortical and Sensory Driver Inputs on Single Thalamocortical Cells , 2013, Cerebral cortex.

[87]  M. Bickford,et al.  Retinal and Tectal “Driver-Like” Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus , 2015, The Journal of Neuroscience.

[88]  Anna S. Mitchell,et al.  The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making , 2015, Neuroscience & Biobehavioral Reviews.

[89]  Shane R. Crandall,et al.  A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses , 2015, Neuron.

[90]  Daniel J. Denman,et al.  Complex Effects on In Vivo Visual Responses by Specific Projections from Mouse Cortical Layer 6 to Dorsal Lateral Geniculate Nucleus , 2015, The Journal of Neuroscience.