The Euclidean Distortion of the Lamplighter Group

AbstractWe show that the cyclic lamplighter group C2≀Cn embeds into Hilbert space with distortion $\mathrm{O}(\sqrt{\log n})$ . This matches the lower bound proved by Lee et al. (Geom. Funct. Anal., 2009), answering a question posed in that paper. Thus, the Euclidean distortion of C2≀Cn is $\varTheta(\sqrt{\log n})$ . Our embedding is constructed explicitly in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a finite group can always be chosen to be equivariant, as shown by Aharoni et al. (Isr. J. Math. 52(3):251–265, 1985) and by Gromov (see de Cornulier et. al. in Geom. Funct. Anal., 2009), such representation-theoretic considerations suggest a general tool for obtaining upper and lower bounds on Euclidean embeddings of finite groups.

[1]  D. Vere-Jones Markov Chains , 1972, Nature.

[2]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[3]  Sanjeev Arora,et al.  Euclidean distortion and the sparsest cut , 2005, Symposium on the Theory of Computing.

[4]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[5]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[6]  Noga Alon,et al.  Semi-direct product in groups and zig-zag product in graphs: connections and applications , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[8]  Subhash Khot,et al.  Nonembeddability theorems via Fourier analysis , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[9]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[10]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[12]  Random walks on the lamplighter group , 1996 .

[13]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[14]  A. Wigderson,et al.  ENTROPY WAVES, THE ZIG-ZAG GRAPH PRODUCT, AND NEW CONSTANT-DEGREE , 2004, math/0406038.

[15]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[16]  B. Mityagin,et al.  Uniform embeddings of metric spaces and of banach spaces into hilbert spaces , 1985 .

[17]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[18]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[19]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[20]  A. Valette,et al.  Isometric Group Actions on Hilbert Spaces: Growth of Cocycles , 2005, math/0509527.