The Local Area Map Building for Mobile Robot Navigation Using Ultrasound and Infrared Sensors

This paper was devoted to improvement of existing and development of the new method for local area map building of mobile robot using sensor fusion techniques. The unstructured environment for navigation of mobile robots is the reason of such task. The offered method provides the local area map building using polar coordinate system and bases on the applications of artificial neural network for fusing of readings from ultrasonic and infrared sensors. Application of the proposed method allows to decrease computational complexity and to increase the accuracy of local area map.

[1]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[2]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[3]  Tie-Qi Chen,et al.  A visual solution to modular neural network system development , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[4]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[5]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[7]  Yoram Koren,et al.  Real-time obstacle avoidance for fact mobile robots , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[9]  Richard J. Duro,et al.  Infrared Sensor Data Correction for Local Area Map Construction by a Mobile Robot , 2003, IEA/AIE.

[10]  Bruce Randall Donald,et al.  Map-making and Localization for Mobile Robots using Shape Metrics , 1992 .

[11]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[12]  Stephen J. Chapman,et al.  MATLAB Programming for Engineers , 1999 .

[13]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building , 1999 .

[14]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[15]  Stephen J. Chapman MATLAB Programming for Engineers (2nd Edition) , 2001 .

[16]  S. Sitharama Iyengar,et al.  Foundations of Wavelet Networks and Applications , 2002 .

[17]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[18]  Wolfgang D. Rencken,et al.  Autonomous sonar navigation in indoor, unknown and unstructured environments , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[19]  J. Dam,et al.  Environment modelling for mobile robots: neural learning for sensor fusion , 1998 .

[20]  W. D. Rencken Autonomous Sonar Navigation in Indoor, Unknown and Unstructured Environments , 1994, IROS.

[21]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .