Feedback Control Under Data Rate Constraints: An Overview

The emerging area of control with limited data rates incorporates ideas from both control and information theory. The data rate constraint introduces quantization into the feedback loop and gives the interconnected system a two-fold nature, continuous and symbolic. In this paper, we review the results available in the literature on data-rate-limited control. For linear systems, we show how fundamental tradeoffs between the data rate and control goals, such as stability, mean entry times, and asymptotic state norms, emerge naturally. While many classical tools from both control and information theory can still be used in this context, it turns out that the deepest results necessitate a novel, integrated view of both disciplines

[1]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[4]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[5]  Sandro Zampieri,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2003, IEEE Trans. Autom. Control..

[6]  J. Rogers Chaos , 1876 .

[7]  D. Popa,et al.  Feedback stabilization of nonlinear affine systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Sandro Zampieri,et al.  A Symbolic Approach to Performance Analysis of Quantized Feedback Systems: The Scalar Case , 2005, SIAM J. Control. Optim..

[9]  Y. Anzai A note on reachability of discrete-time quantized conrol systems , 1974 .

[10]  R. Curry Estimation and Control with Quantized Measurements , 1970 .

[11]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[12]  Andrey V. Savkin,et al.  Multirate Stabilization of Linear Multiple Sensor Systems via Limited Capacity Communication Channels , 2005, SIAM J. Control. Optim..

[13]  Tamer Basar,et al.  Randomized algorithms for quadratic stability of quantized sampled-data systems, , 2004, Autom..

[14]  A.S. Matveev,et al.  An analogue of Shannon information theory for networked control systems: State estimation via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[16]  Andrey V. Savkin,et al.  The problem of LQG optimal control via a limited capacity communication channel , 2004, Syst. Control. Lett..

[17]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[18]  John C. Kieffer,et al.  On a type of stochastic stability for a class of encoding schemes , 1983, IEEE Trans. Inf. Theory.

[19]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[20]  R. Curry,et al.  Separation theorem for nonlinear measurements , 1969 .

[21]  Sandro Zampieri,et al.  Quantized stabilization of linear systems: complexity versus performance , 2004, IEEE Transactions on Automatic Control.

[22]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[23]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.

[24]  Roy L. Adler,et al.  Topological entropy , 2008, Scholarpedia.

[25]  R.H. Middleton,et al.  Control over a Bandwidth Limited Signal to Noise Ratio constrained Communication Channel , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[26]  Claudio De Persis,et al.  n-bit stabilization of n-dimensional nonlinear systems in feedforward form , 2004, IEEE Transactions on Automatic Control.

[27]  Dragan Nesic,et al.  Input-output stability properties of networked control systems , 2004, IEEE Transactions on Automatic Control.

[28]  Panos J. Antsaklis,et al.  Guest Editorial Special Issue on Networked Control Systems , 2004, IEEE Trans. Autom. Control..

[29]  M. Dahleh,et al.  Fundamental limitations of performance in the presence of finite capacity feedback , 2005, Proceedings of the 2005, American Control Conference, 2005..

[30]  I. Petersen,et al.  Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[31]  John Baillieul,et al.  Data-rate requirements for nonlinear Feedback control , 2004 .

[32]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[33]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[34]  R. Larson,et al.  Optimum quantization in dynamic systems , 1967, IEEE Transactions on Automatic Control.

[35]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[36]  J. Hespanha,et al.  Towards the Control of Linear Systems with Minimum Bit-Rate , 2002 .

[37]  R. Marleau,et al.  Comments on "Optimum quantization in dynamic systems" , 1972 .

[38]  S. Sahai,et al.  The necessity and sufficiency of anytime capacity for control over a noisy communication link , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[39]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[40]  Jan M. Maciejowski,et al.  Stabilizability of SISO control systems under constraints of channel capacities , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[41]  V. Borkar,et al.  LQG Control with Communication Constraints , 1997 .

[42]  D. Nesic,et al.  Input-to-state stabilization of linear systems with quantized feedback , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[43]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[44]  Bruce A. Francis,et al.  Quadratic stabilization of sampled-data systems with quantization , 2003, Autom..

[45]  Tamer Basar,et al.  Remote control of LTI systems over networks with state quantization , 2005, Syst. Control. Lett..

[46]  Jean-Charles Delvenne,et al.  An optimal quantized feedback strategy for scalar linear systems , 2006, IEEE Transactions on Automatic Control.

[47]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[48]  T. Fischer,et al.  Optimal quantized control , 1982 .

[49]  T. Basar,et al.  State estimation and control for linear systems over communication networks , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[50]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[51]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[52]  Ian R. Petersen,et al.  Robust stabilization of linear uncertain discrete-time systems via a limited capacity communication channel , 2004, Syst. Control. Lett..

[53]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[54]  Sekhar Tatikonda,et al.  Some scaling properties of large distributed control systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[55]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[56]  Thomas R. Fischer Quantized control with data compression constraints , 1984 .

[57]  Andrey V. Savkin,et al.  An analogue of Shannon information theory for networked control systems. Stabilization via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[58]  Robin J. Evans,et al.  Optimal infinite horizon control under a low data rate. , 2006 .

[59]  A.S. Matveev,et al.  Decentralized Stabilization of Linear Systems via Limited Capacity Communication Networks , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[60]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[61]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[62]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[63]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[64]  B.D.O. Anderson,et al.  Stability of Adaptive Delta Modulators with a Forgetting Factor and Constant Inputs , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[65]  Robin J. Evans,et al.  A data-rate limited view of adaptive control , 2006 .

[66]  Tomohisa Hayakawa,et al.  Adaptive quantized control for nonlinear uncertain systems , 2006, 2006 American Control Conference.

[67]  Alberto Isidori,et al.  Stabilizability by state feedback implies stabilizability by encoded state feedback , 2004, Syst. Control. Lett..

[68]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[69]  J. Freudenberg,et al.  Control over Signal-to-Noise Ratio Constrained Channels: Stabilization and Performance , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[70]  S. Dey,et al.  Infimum data rates for stabilising Markov jump linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[71]  Antonio Bicchi,et al.  Construction of invariant and attractive sets for quantized-input linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[72]  Andrey V. Savkin,et al.  Comments on "Control over noisy channels" and relevant negative results , 2005, IEEE Trans. Autom. Control..

[73]  Richard H. Middleton,et al.  EFFECTS OF TIME DELAY ON FEEDBACK STABILISATION OVER SIGNAL-TO-NOISE RATIO CONSTRAINED CHANNELS , 2005 .

[74]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[75]  Masoud Salehi,et al.  Communication Systems Engineering , 1994 .

[76]  Fabio Fagnani Chaotic Quantized Feedback Stabilizers: The Scalar Case , 2004, Commun. Inf. Syst..

[77]  N. Elia,et al.  Quantized feedback stabilization of non-linear affine systems , 2004 .

[78]  Qiang Ling,et al.  Stability of quantized control systems under dynamic bit assignment , 2005, IEEE Transactions on Automatic Control.

[79]  Daniel Liberzon,et al.  On stabilization of linear systems with limited information , 2003, IEEE Trans. Autom. Control..

[80]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[81]  J. Baillieul,et al.  Problems in Decentralized Sensor-Actuator Networks , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[82]  Robin J. Evans,et al.  Stabilising decentralised linear systems under data rate constraints , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[83]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[84]  J. Baillieul Feedback coding for information-based control: operating near the data-rate limit , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[85]  Pravin Varaiya,et al.  Scalar estimation and control with noisy binary observations , 2004, IEEE Transactions on Automatic Control.

[86]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[87]  Tamer Başar,et al.  Constrained State Estimation and Control over Communication Networks , 2004 .

[88]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[89]  S. Dasgupta Control over bandlimited communication channels: limitations to stabilizability , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).