On the Structure of Polynomial Time Reducibility

Two notions of polynomml time reduclbihty, denoted here by ~ T e and <.~P, were defined by Cook and Karp, respectively The abstract propertms of these two relatmns on the domain of computable sets are investigated. Both relations prove to be dense and to have minimal pairs. Further , there is a strictly ascending sequence with a minimal pair of upper bounds to the sequence. Our method of showing density ymlds the result that if P ~ NP then there are members of NP -P that are not polynomml complete

[1]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[2]  Michael Machtey The Honest Subrecursive Classes Are a Lattice , 1974, Inf. Control..

[3]  Larry Stockmeyer,et al.  Planar 3-colorability is polynomial complete , 1973, SIGA.

[4]  Paul Axt,et al.  On a subrecursive hierarchy and primitive recursive degrees , 1959 .

[5]  Journal of the Association for Computing Machinery , 1961, Nature.

[6]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[7]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[8]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[9]  Jeffrey D. Ullman,et al.  Polynomial complete scheduling problems , 1973, SOSP '73.

[10]  Michael Machtey,et al.  Augmented Loop Languages and Classes of Computables Functions , 1972, J. Comput. Syst. Sci..

[11]  Allan Borodin,et al.  Dense and Non-Dense Families of Complexity Classes , 1969, SWAT.

[12]  Ravi Sethi,et al.  Complete register allocation problems , 1973, SIAM J. Comput..

[13]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[14]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[15]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[16]  Michael Machtey,et al.  Classification of computable functions by primitive recursive classes , 1971, STOC.

[17]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[18]  Dennis M. Ritchie,et al.  A Classification of the Recursive Functions , 1972 .