Classifying scheduling policies with respect to higher moments of conditional response time

In addition to providing small mean response times, modern applications seek to provide users predictable service and, in some cases, Quality of Service (QoS) guarantees. In order to understand the predictability of response times under a range of scheduling policies, we study the conditional variance in response times seen by jobs of different sizes. We define a metric and a criterion that distinguish between contrasting functional behaviors of conditional variance, and we then classify large groups of scheduling policies.In addition to studying the conditional variance of response times, we also derive metrics appropriate for comparing higher conditional moments of response time across job sizes. We illustrate that common statistics such as raw and central moments are not appropriate when comparing higher conditional moments of response time. Instead, we find that cumulant moments should be used.

[1]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[2]  Michael A. Bender,et al.  Flow and stretch metrics for scheduling continuous job streams , 1998, SODA '98.

[3]  Linus Schrage,et al.  The Queue M/G/1 with the Shortest Remaining Processing Time Discipline , 1966, Oper. Res..

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  Adam Wierman,et al.  Asymptotic convergence of scheduling policies with respect to slowdown , 2002, Perform. Evaluation.

[6]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[7]  J. Shanthikumar,et al.  On extremal service disciplines in single-stage queueing systems , 1990, Journal of Applied Probability.

[8]  Leonard Kleinrock,et al.  Theory, Volume 1, Queueing Systems , 1975 .

[9]  Ward Whitt,et al.  A Nonstationary Offered-Load Model for Packet Networks , 2001, Telecommun. Syst..

[10]  S. F. Yashkov Mathematical problems in the theory of shared-processor systems , 1992 .

[11]  B. Kahn,et al.  How Tolerable is Delay? Consumers’ Evaluations of Internet Web Sites after Waiting , 1998 .

[12]  Abraham Silberschatz,et al.  Operating System Concepts , 1983 .

[13]  Rudesindo Núñez-Queija,et al.  Queues with Equally Heavy Sojourn Time and Service Requirement Distributions , 2002 .

[14]  Gustavo de Veciana,et al.  Enhancing both network and user performance for networks supporting best effort traffic , 2004, IEEE/ACM Transactions on Networking.

[15]  S. F. Yashkov,et al.  Processor-sharing queues: Some progress in analysis , 1987, Queueing Syst. Theory Appl..

[16]  Ward Whitt,et al.  Predicting Response Times in Processor-Sharing Queues , 2000 .

[17]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[18]  Ajay D. Kshemkalyani,et al.  SWIFT: scheduling in web servers for fast response time , 2003, Second IEEE International Symposium on Network Computing and Applications, 2003. NCA 2003..

[19]  W. Whitt,et al.  Improving Service by Informing Customers About Anticipated Delays , 1999 .

[20]  Mor Harchol-Balter,et al.  Size-based scheduling to improve web performance , 2003, TOCS.

[21]  Adam Wierman,et al.  Classifying scheduling policies with respect to unfairness in an M/GI/1 , 2003, SIGMETRICS '03.

[22]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[23]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[24]  Abraham Silberschatz,et al.  Operating System Concepts, 5th Edition , 1994 .

[25]  Mor Harchol-Balter,et al.  Analysis of SRPT scheduling: investigating unfairness , 2001, SIGMETRICS '01.

[26]  Eric J. Friedman,et al.  Fairness and efficiency in web server protocols , 2003, SIGMETRICS '03.

[27]  James S. Harris,et al.  Tables of integrals , 1998 .

[28]  Adam Wierman,et al.  Nearly insensitive bounds on SMART scheduling , 2005, SIGMETRICS '05.

[29]  Ward Whitt,et al.  Predicting Queueing Delays , 1999 .

[30]  Linus Schrage,et al.  Letter to the Editor - A Proof of the Optimality of the Shortest Remaining Processing Time Discipline , 1968, Oper. Res..

[31]  Carey L. Williamson,et al.  Quantifying the properties of SRPT scheduling , 2003, 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003..

[32]  Benjamin Avi-Itzhak,et al.  A resource-allocation queueing fairness measure , 2004, SIGMETRICS '04/Performance '04.

[33]  A. P. Zwart,et al.  Sojourn time asymptotics in the M/G/1 processor sharing queue , 1998, Queueing Syst. Theory Appl..

[34]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[35]  M. Hui,et al.  How Does Waiting Duration Information Influence Customers' Reactions to Waiting for Services?1 , 1996 .

[36]  W. Whitt,et al.  Heavy-traffic asymptotic expansions for the asymptotic decay rates in the BMAP/G/1 queue , 1994 .

[37]  Timothy I. Matis,et al.  Using Cumulant Functions in Queueing Theory , 2002, Queueing Syst. Theory Appl..

[38]  Guillaume Urvoy-Keller,et al.  Performance analysis of LAS-based scheduling disciplines in a packet switched network , 2004, SIGMETRICS '04/Performance '04.

[39]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[40]  Guillaume Urvoy-Keller,et al.  Analysis of LAS scheduling for job size distributions with high variance , 2003, SIGMETRICS '03.

[41]  Mor Harchol-Balter,et al.  Implementation of SRPT Scheduling in Web Servers , 2000 .

[42]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[43]  G. J. A. Stern,et al.  Queueing Systems, Volume 2: Computer Applications , 1976 .

[44]  Mor Harchol-Balter,et al.  A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions , 2003, Computer Performance Evaluation / TOOLS.