A Hormone-Based Controller for Evaluation-Minimal Evolution in Decentrally Controlled Systems

One of the main challenges in automatic controller synthesis is to develop methods that can successfully be applied for complex tasks. The difficulty is increased even more in the case of settings with multiple interacting agents. We apply the artificial homeostatic hormone system (AHHS) approach, which is inspired by the signaling network of unicellular organisms, to control a system of several independently acting agents decentrally. The approach is designed for evaluation-minimal, artificial evolution in order to be applicable to complex modular robotics scenarios. The performance of AHHS controllers is compared with neuroevolution of augmenting topologies (NEAT) in the coupled inverted pendulums benchmark. AHHS controllers are found to be better for multimodular settings. We analyze the evolved controllers with regard to the usage of sensory inputs and the emerging oscillations, and we give a nonlinear dynamics interpretation. The generalization of evolved controllers to initial conditions far from the original conditions is investigated and found to be good. Similarly, the performance of controllers scales well even with module numbers different from the original domain the controller was evolved for. Two reference implementations of a similar controller approach are reported and shown to have shortcomings. We discuss the related work and conclude by summarizing the main contributions of our work.

[1]  Inman Harvey,et al.  Evolutionary robotics: the Sussex approach , 1997, Robotics Auton. Syst..

[2]  Karl Crailsheim,et al.  The effect of activity level and ambient temperature on thermoregulation in isolated honeybees (Hymenoptera: Apidae) , 1999 .

[3]  F. Pasemann Evolving neurocontrollers for balancing an inverted pendulum. , 1998, Network.

[4]  Jon Timmis,et al.  Timidity: A Useful Mechanism for Robot Control? , 2003 .

[5]  T. Schmickl,et al.  Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages , 2001, Journal of Comparative Physiology A.

[6]  L. Buşoniu Evolutionary function approximation for reinforcement learning , 2006 .

[7]  H. L. Armus,et al.  Discrimination Learning in Paramecia (P. caudatum) , 2006 .

[8]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[9]  B Berger,et al.  Proline, leucine and phenylalanine metabolism in adult honeybee drones (Apis mellifica carnica Pollm) , 1997 .

[10]  Thomas Schmickl,et al.  Evolving a Novel Bio-inspired Controller in Reconfigurable Robots , 2009, ECAL.

[11]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[12]  J. Endler Some general comments on the evolution and design of animal communication systems. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[14]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[15]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[16]  Thomas Schmickl,et al.  A hormone-based controller for evolutionary multi-modular robotics: From single modules to gait learning , 2010, IEEE Congress on Evolutionary Computation.

[17]  K. Crailsheim,et al.  Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.) , 1987 .

[18]  Amit Patra,et al.  Swing-up and stabilization of a cart-pendulum system under restricted cart track length , 2002, Syst. Control. Lett..

[19]  T. Schmickl,et al.  Collective and individual nursing investment in the queen and in young and old honeybee larvae during foraging and non-foraging periods , 2003, Insectes Sociaux.

[20]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[21]  Masahiro Kaneda,et al.  Analysis of the energy-based control for swinging up two pendulums , 2005, IEEE Transactions on Automatic Control.

[22]  S. J. Holmes,et al.  PHOTOTAXIS IN VOLVOX , 1903 .

[23]  Phil Husbands,et al.  Evolving Robot Behaviours with Diffusing Gas Networks , 1998, EvoRobot.

[24]  K. Kaneko,et al.  How fast elements can affect slow dynamics , 2001, nlin/0108038.

[25]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[26]  Karl Crailsheim,et al.  Intestinal transport of sugars in the honeybee (Apis mellifera L.) , 1988 .

[27]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[28]  Wei-Min Shen,et al.  Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots , 2002, IEEE Trans. Robotics Autom..

[29]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[30]  K. Crailsheim,et al.  Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.) , 1989 .

[31]  K. Crailsheim,et al.  Nurse bees support the physiological development of young bees (Apis mellifera L.) , 1999, Journal of Comparative Physiology B.

[32]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[33]  K. Crailsheim,et al.  The behaviour of drifted nurse honey bees , 1999, Insectes Sociaux.

[34]  Karl Crailsheim,et al.  Uptake of l-leucine into isolated enterocytes of the honeybee (Apis mellifera L.) depending on season , 1990 .

[35]  William H. Press,et al.  Numerical recipes in C , 2002 .

[36]  K. Crailsheim,et al.  Early postnatal stimulation influences passive avoidance behaviour of adult rats , 1998, Behavioural Brain Research.

[37]  E Tafeit,et al.  Body fat distribution of overweight females with a history of weight cycling , 2004, International Journal of Obesity.

[38]  K. Crailsheim,et al.  Effects of postnatal stimulation on the passive avoidance behaviour of young rats , 1995, Behavioural Brain Research.

[39]  I Rojdestvenski,et al.  Robustness and time-scale hierarchy in biological systems. , 1999, Bio Systems.

[40]  Dennis Bray,et al.  Wetware: A Computer in Every Living Cell , 2009 .

[41]  K. Crailsheim,et al.  Free amino acids in the haemolymph of honey bee queens(Apis mellifera L.) , 2003, Amino Acids.

[42]  Vito Trianni,et al.  Evolutionary Swarm Robotics - Evolving Self-Organising Behaviours in Groups of Autonomous Robots , 2008, Studies in Computational Intelligence.

[43]  D. Floreano,et al.  Evolutionary Conditions for the Emergence of Communication in Robots , 2007, Current Biology.

[44]  E Tafeit,et al.  Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: comparison with type 2 diabetic women. , 2004, American journal of physical anthropology.

[45]  D. Bray,et al.  Intracellular signalling as a parallel distributed process. , 1990, Journal of theoretical biology.

[46]  Karl Crailsheim,et al.  The flow of jelly within a honeybee colony , 1992, Journal of Comparative Physiology B.

[47]  Thomas Schmickl,et al.  Analysis and implementation of an Artificial Homeostatic Hormone System: A first case study in robotic hardware , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Karl Crailsheim,et al.  A substance in honey bee larvae inhibits the growth of Paenibacillus larvae larvae , 2003 .

[49]  P. Friedrich,et al.  Inhibitory effect of a brain derived peptide preparation on the Ca++-dependent protease, calpain , 2000, Journal of Neural Transmission.

[50]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[51]  John R. Koza,et al.  Genetic breeding of non-linear optimal control strategies for broom balancing , 1990 .

[52]  Wei-Min Shen,et al.  Scalable self-assembly and self-repair in a collective of robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  T. Schmickl,et al.  How honeybees (Apis mellifera L.) change their broodcare behaviour in response to non-foraging conditions and poor pollen conditions , 2002, Behavioral Ecology and Sociobiology.

[54]  Heinz Wörn,et al.  Symbricator3D - A Distributed Simulation Environment for Modular Robots , 2009, ICIRA.

[55]  Wei-Min Shen,et al.  Multimode locomotion via SuperBot reconfigurable robots , 2006, Auton. Robots.

[56]  Jevin D. West,et al.  Evidence for complex, collective dynamics and emergent, distributed computation in plants , 2004, Proc. Natl. Acad. Sci. USA.

[57]  Karl Crailsheim,et al.  Transport of leucine in the alimentary canal of the honeybee (Apis mellifera L.) and its dependence on season , 1988 .

[58]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[59]  K. Crailsheim,et al.  Drifting of honeybees , 1998, Insectes Sociaux.

[60]  Phil Husbands,et al.  The Evolution of Reaction-Diffusion Controllers for Minimally Cognitive Agents , 2010, Artificial Life.

[61]  Medhat M. Sadek,et al.  Protein Metabolism in Larvae of the Cotton Leaf-Worm Spodoptera littoralis (Lepidoptera: Noctuidae) and Its Response to Three Mycotoxins , 2001 .

[62]  Phil Husbands,et al.  Exploring the Kuramoto model of coupled oscillators in minimally cognitive evolutionary robotics tasks , 2010, IEEE Congress on Evolutionary Computation.

[63]  Masaru Tomita,et al.  Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico , 2005, FEBS letters.

[64]  Satoshi Murata,et al.  Toward a scalable modular robotic system , 2007, IEEE Robotics & Automation Magazine.

[65]  K. Crailsheim,et al.  Free fatty acids digested from pollen and triolein in the honeybee (Apis mellifera carnica Pollmann) midgut , 2001, Journal of Comparative Physiology B.

[66]  Karl Crailsheim,et al.  Age-dependent histochemical changes in the peritrophic membranes of the honeybee Apis mellifera (Hymenoptera: Apidae) , 1988 .

[67]  Phil Husbands,et al.  Evolutionary robotics , 2014, Evolutionary Intelligence.

[68]  K. Crailsheim,et al.  Influence of BDNF and FCS on viability and programmed cell death (PCD) of developing cortical chicken neurons in vitro. , 1998, Journal of neural transmission. Supplementum.

[69]  Thomas Schmickl,et al.  Complex Taxis-Behaviour in a Novel Bio-Inspired Robot Controller , 2010, ALIFE.

[70]  Thomas Schmickl,et al.  Modelling a hormone-inspired controller for individual- and multi-modular robotic systems , 2011 .

[71]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[72]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[73]  A. Ishiguro,et al.  Evolutionary construction of behavior arbitration mechanisms based on dynamically-rearranging neural networks , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[74]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[75]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[76]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[77]  Karl Crailsheim,et al.  Metabolic rates and metabolic power of honeybees in tethered flight related to temperature and drag (Hymenoptera: Apidae). , 1999 .

[78]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[79]  K. Crailsheim,et al.  Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. , 1998, Journal of insect physiology.

[80]  Karl Crailsheim,et al.  Oxygen consumption and body temperature of active and resting honeybees. , 2003, Journal of insect physiology.

[81]  Rodney A. Brooks,et al.  From earwigs to humans , 1997, Robotics Auton. Syst..

[82]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[83]  Nancy Forbes Imitation of Life , 2004 .

[84]  Tanguy Chouard,et al.  Evolution: Revenge of the hopeful monster , 2010, Nature.

[85]  Medhat M. Sadek,et al.  The chemosterilizing activity of some mycotoxins and their influence on the development and survival of Spodoptera littoralis (Boisd.) (Lep., Noctuidae) , 1996 .

[86]  K. Crailsheim,et al.  Importance of proline and other amino acids during honeybee flight , 2000, Amino Acids.

[87]  K. Crailsheim,et al.  Amino acids and osmolarity in honeybee drone haemolymph , 2005, Amino Acids.

[88]  Yan Meng,et al.  Autonomous Self-Reconfiguration of Modular Robots by Evolving a Hierarchical Mechanochemical Model , 2011, IEEE Computational Intelligence Magazine.

[89]  Karl Crailsheim,et al.  Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica) , 2000 .

[90]  Thomas Schmickl,et al.  Artificial Hormone Reaction Networks - Towards Higher Evolvability in Evolutionary Multi-Modular Robotics , 2010, ALIFE.

[91]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[92]  Karl Crailsheim,et al.  Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.) , 1998 .

[93]  E. Gilles,et al.  Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. , 2004, Bio Systems.

[94]  Karl Crailsheim,et al.  Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann) , 1997 .

[95]  Arend Hintze,et al.  Critical Properties of Complex Fitness Landscapes , 2010, ALIFE.

[96]  Wolfgang Haupt,et al.  Flagellar Activity of the Colony Members of Volvox aureus Ehrbg. during Light Stimulation , 1971 .

[97]  Karl Crailsheim,et al.  Lipid and sugar absorption , 1996 .

[98]  Stefano Nolfi,et al.  Evolutionary robotics , 1998, Lecture Notes in Computer Science.

[99]  Karl Crailsheim,et al.  Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm) , 1986 .

[100]  W. Walter A Machine that Learns , 1951 .

[101]  Phil Husbands,et al.  Homeostasis and evolution together dealing with novelties and managing disruptions , 2009, Int. J. Intell. Comput. Cybern..

[102]  Karl Crailsheim,et al.  Trophallactic interactions in the adult honeybee (Apis mellifera L.) , 1998 .

[103]  David W. Payton,et al.  Pheromone Robotics , 2001, Auton. Robots.

[104]  Karl Crailsheim,et al.  Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann) , 1999 .

[105]  K. Crailsheim,et al.  Adult honeybee's resistance against Paenibacillus larvae larvae, the causative agent of the American foulbrood. , 2001, Journal of invertebrate pathology.

[106]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[107]  Karl Crailsheim,et al.  Endothermic heat production in honeybee winter clusters , 2003, Journal of Experimental Biology.

[108]  Kenneth Webb,et al.  Evolution of Communication Simulation of Adaptive Behavior – Project Report , 2004 .

[109]  Karl Crailsheim,et al.  Pollen utilization in non-breeding honeybees in winter , 1993 .

[110]  Thomas Schmickl,et al.  Costs of Environmental Fluctuations and Benefits of Dynamic Decentralized Foraging Decisions in Honey Bees , 2004, Adapt. Behav..

[111]  E. Robinson Cybernetics, or Control and Communication in the Animal and the Machine , 1963 .

[112]  Thomas Schmickl,et al.  Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply , 2004 .

[113]  Karl Crailsheim,et al.  The protein balance of the honey bee worker. , 1990 .

[114]  K. Crailsheim Protein synthesis in the Honeybee (Apis mellifera L.) and trophallactic distribution of Jelly among imagos in laboratory experiments , 1990 .

[115]  Karl Crailsheim,et al.  Distribution of haemolymph in the honeybee (Apis mellifica) in relation to season, age and temperature , 1985 .

[116]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[117]  R Wronski,et al.  A brain derived peptide preparation reduces the translation dependent loss of a cytoskeletal protein in primary cultured chicken neurons. , 2000, Journal of neural transmission. Supplementum.

[118]  K. Crailsheim,et al.  Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.). , 1997, Journal of insect physiology.

[119]  Karl Crailsheim,et al.  The influence of brood on the pollen consumption of worker bees (Apis mellifera L.). , 1998, Journal of insect physiology.

[120]  Thomas Schmickl,et al.  Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics , 2011, GECCO '11.

[121]  Stefano Nolfi,et al.  Learning and Evolution , 1999, Auton. Robots.

[122]  Karl Crailsheim,et al.  Regulation of food passage in the intestine of the honeybee (Apis mellifera L.) , 1988 .

[123]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[124]  Karl Crailsheim,et al.  Oxygen Consumption at Different Activity Levels and Ambient Temperatures in Isolated Honeybees (Hymenoptera: Apidae) , 1999 .

[125]  Simon Parsons,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines by Stefano Nolfi and Dario Floreano, MIT Press, 320 pp., $28.00, ISBN 0-262-14070-5 , 2004, Knowledge engineering review (Print).

[126]  Wei-Min Shen,et al.  Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms , 2004, Auton. Robots.

[127]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[128]  Karl Crailsheim,et al.  A comparison of pollen consumption and digestion in honeybee (Apis mellifera carnica) drones and workers , 1993 .

[129]  Jonathan Timmis,et al.  Artificial Homeostatic System: A Novel Approach , 2005, ECAL.

[130]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[131]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..