Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function

[1]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[2]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[5]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[6]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[7]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[8]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[9]  V. Glezer,et al.  Investigation of complex and hypercomplex receptive fields of visual cortex of the cat as spatial frequency filters. , 1973, Vision research.

[10]  J. Movshon,et al.  Proceedings: On the response linearity of neurones in cat visual cortex. , 1975, Journal of Physiology.

[11]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of striate cortical neurones , 1975, Nature.

[12]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[13]  D. G. Albrecht,et al.  Cortical cells ; Bar and edge detectors, or spatial frequency filters , 1978 .

[14]  D. Pollen,et al.  Spatial frequency selectivity of periodic complex cells in the visual cortex of the cat , 1978, Vision Research.

[15]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[16]  Jack D. Gaskill,et al.  Linear systems, fourier transforms, and optics , 1978, Wiley series in pure and applied optics.

[17]  P. O. Bishop,et al.  Hypercomplex and simple/complex cell classifications in cat striate cortex. , 1978, Journal of neurophysiology.

[18]  D. Pollen,et al.  Relationship between spatial frequency selectivity and receptive field profile of simple cells. , 1979, The Journal of physiology.

[19]  K. Albus,et al.  The detection of movement direction and effects of contrast reversal in the cat's striate cortex , 1980, Vision Research.

[20]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[21]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[22]  H B Barlow,et al.  The Ferrier lecture, 1980 , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[24]  V Virsu,et al.  Phase of responses to moving sinusoidal gratings in cells of cat retina and lateral geniculate nucleus. , 1981, Journal of neurophysiology.

[25]  B. B. Lee,et al.  Phase of responses to sinusoidal gratings of simple cells in cat striate cortex. , 1981, Journal of Neurophysiology.

[26]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[27]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[28]  D. G. Albrecht,et al.  Striate cortex responses to periodic patterns with and without the fundamental harmonics , 1981, The Journal of physiology.

[29]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[30]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[31]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[32]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[33]  Andrew B. Watson,et al.  A look at motion in the frequency domain , 1983 .

[34]  J. Robson Frequency Domain Visual Processing , 1983 .

[35]  R. Shapley,et al.  The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry , 1984, Vision Research.

[36]  G. Westheimer Spatial vision. , 1984, Annual review of psychology.

[37]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[38]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[39]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[41]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[42]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[43]  W S Geisler,et al.  Sampling-theory analysis of spatial vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[44]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[46]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[47]  J. P. Jones,et al.  The two-dimensional spectral structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[48]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[49]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[50]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[51]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[52]  I. Ohzawa,et al.  Simple cells in the visual cortex of the cat can be narrowly tuned for spatial frequency , 1988, Visual Neuroscience.

[53]  Curtis L. Baker,et al.  Space-time separability of direction selectivity in cat striate cortex neurons , 1988, Vision Research.