A user perspective on errors-in-variables methods in system identification

Abstract The paper starts with a brief survey of errors-in-variables methods in system identification. Background and motivation are given, and it is illustrated why the identification problem can be difficult. Under general weak assumptions, the system is not identifiable, but can be parameterized using one degree of freedom. Examples where identifiability is achieved under additional assumptions are also provided. A number of approaches for parameter estimation of errors-in-variables models are reviewed. The underlying assumptions and principles for each approach are highlighted. The paper then continues by discussing from a user’s perspective on how to proceed when practical problems are handled.

[1]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[2]  R. Frisch Statistical confluence analysis by means of complete regression systems , 1934 .

[3]  Torsten Söderström,et al.  Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems , 2011, Autom..

[4]  Graham C. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2008, Autom..

[5]  Torbjörn Wigren,et al.  Globally Stable Wireless Data Flow Control , 2018, IEEE Transactions on Control of Network Systems.

[6]  Rik Pintelon,et al.  Errors-in-variables identification of dynamic systems excited by arbitrary non-white input , 2013, Autom..

[7]  Manfred Deistler,et al.  A Structure Theory for Linear Dynamic Errors-in-Variables Models , 1998 .

[8]  A. Karimi,et al.  Data‐driven model reference control with asymptotically guaranteed stability , 2011 .

[9]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.

[10]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[11]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[12]  M. Deistler Linear dynamic errors-in-variables models , 1986, Journal of Applied Probability.

[13]  A. Benveniste,et al.  Optimal sensor location for detecting changes in dynamical behavior , 1986, 1986 25th IEEE Conference on Decision and Control.

[14]  Torsten Söderström,et al.  Errors-in-variables identification using maximum likelihood estimation in the frequency domain , 2017, Autom..

[15]  Hugues Garnier,et al.  Third-order cumulants based methods for continuous-time errors-in-variables model identification , 2008, Autom..

[16]  T. Söderström,et al.  Bias correction in least-squares identification , 1982 .

[17]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[18]  B. Anderson,et al.  Linear dynamic errors-in-variables models : Some structure theory , 1989 .

[19]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[20]  Torsten Söderström,et al.  Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification , 2010, Autom..

[21]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[22]  Torsten Söderström,et al.  On identification methods for direct data‐driven controller tuning , 2011 .

[23]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[24]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[25]  R. E. Kalman,et al.  Identification from Real Data , 1982 .

[26]  Torsten Söderström,et al.  A unified framework for EIV identification methods when the measurement noises are mutually correlated , 2014, Autom..

[27]  Jitendra Tugnait Stochastic system identification with noisy input using cumulant statistics , 1992 .

[28]  Torsten Söderström,et al.  Relations between Bias-Eliminating Least Squares, the Frisch scheme and Extended Compensated Least Squares methods for identifying errors-in-variables systems , 2009, Autom..

[29]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[30]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..

[31]  George V. Moustakides,et al.  Optimum robust detection of changes in the AR part of a multivariable ARMA process , 1987 .

[32]  O. Reiersøl Identifiability of a Linear Relation between Variables Which Are Subject to Error , 1950 .

[33]  Umberto Soverini,et al.  The Frisch scheme in algebraic and dynamic identification problems , 2008, Kybernetika.

[34]  Richard H. Middleton,et al.  Feedback Control Applications in New Radio: Exploring Delay Control and Alignment , 2019, IEEE Vehicular Technology Magazine.

[35]  B. Anderson,et al.  Identification of multivariable errors in variable models with dynamics , 1986 .

[36]  Torsten Söderström,et al.  A covariance matching approach for identifying errors-in-variables systems , 2009, Autom..

[37]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[38]  Graham C. Goodwin,et al.  An errors-in-variables method for non-stationary data with application to mineral exploration , 2009, Autom..

[39]  J. H. Schuppen Stochastic realization problems , 1989 .

[40]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[41]  Riccardo Sven Risuleo System identification with input uncertainties : an EM kernel-based approach , 2016 .

[42]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[43]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[44]  Torsten Söderström,et al.  System identification for the errors-in-variables problem , 2012 .

[45]  T. Söderström Discrete-Time Stochastic Systems: Estimation and Control , 1995 .

[46]  Jonas Linder,et al.  Indirect System Identification for Unknown Input Problems : With Applications to Ships , 2017 .