On the Relationship between the Biconnectivity Augmentation and Traveling Salesman Problems

Abstract A strategy for solving the traveling salesman problem is adapted to the problem of finding a biconnected subgraph of a weighted graph whose cost function satisfies the triangle inequality. An approximation algorithm similar to Christofides' algorithm [5] for the traveling salesman problem is shown to possess the same worst-case bound of 3 2 when applied to the biconnectivity augmentation problem. A tight inequality is derived relating the cost of an optimal traveling salesman tour to the cost of an optimal biconnection.

[1]  Donald B. Johnson,et al.  Priority Queues with Update and Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[2]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[3]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[4]  Frank Harary,et al.  Graph Theory , 2016 .

[5]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[6]  R. Prim Shortest connection networks and some generalizations , 1957 .

[7]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[8]  Joseph JáJá,et al.  Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..

[9]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems: an annotated bibliography , 1976 .

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[12]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[13]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[14]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[17]  Arnie Rosenthal,et al.  Smallest Augmentations to Biconnect a Graph , 1977, SIAM J. Comput..

[18]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[19]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .