State Distributions and Minimum Relative Entropy Noise Sequences in Uncertain Stochastic Systems: The Discrete-Time Case
暂无分享,去创建一个
[1] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[2] O. Gaans. Probability measures on metric spaces , 2022 .
[3] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[4] A. P. Kurdjukov,et al. Anisotropy-based performance analysis of linear discrete time invariant control systems , 2001 .
[5] Ian R. Petersen,et al. Minimum Relative Entropy State Transitions in Linear Stochastic Systems: the Continuous Time Case , 2012, ArXiv.
[6] J. Willems. Dissipative dynamical systems part I: General theory , 1972 .
[7] Toshio Mikami,et al. Variational processes from the weak forward equation , 1990 .
[8] Ian R. Petersen,et al. MINIMAX LQG CONTROL , 2006 .
[9] Frank L. Lewis,et al. Optimal Control , 1986 .
[10] S. Taylor,et al. INTEGRAL, MEASURE AND DERIVATIVE , 1967 .
[11] Peter E. Kloeden,et al. Anisotropy-based robust performance analysis of finite horizon linear discrete time varying systems , 2006 .
[12] A. P. Kurdjukov,et al. On Computing the Anisotropic Norm of Linear Discrete-Time-Invariant Systems , 1996 .
[13] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[14] I. Postlethwaite,et al. State-space formulae for discrete-time H∞ optimization , 1989 .
[15] N. Martin,et al. Mathematical Theory of Entropy , 1981 .
[16] A. Beghi,et al. On the relative entropy of discrete-time Markov processes with given end-point densities , 1996, IEEE Trans. Inf. Theory.
[17] Michele Pavon,et al. How to Steer a Quantum System over a Schrödinger Bridge , 2002, Quantum Inf. Process..
[18] Huibert Kwakernaak,et al. Linear Optimal Control Systems , 1972 .
[19] A. P. Kurdjukov,et al. State-Space Solution to Anisotropy-Based Stochastic H∞-Optimization Problem , 1996 .
[20] Li Xie,et al. Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models with conditional relative entropy constraints , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[21] J. Lynch,et al. A weak convergence approach to the theory of large deviations , 1997 .
[22] M. Aschwanden. Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.
[23] Ian R. Petersen,et al. Robust Properties of Risk-Sensitive Control , 2000, Math. Control. Signals Syst..
[24] M. Mariton,et al. A homotopy algorithm for solving coupled riccati equations , 1985 .
[25] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Statistics of random processes , 1977 .
[26] R. Schilling. Measures, Integrals and Martingales: Frontmatter , 2006 .
[27] In Choi,et al. TIME-SERIES-BASED ECONOMETRICS , 1998, Econometric Theory.
[28] R. Xu,et al. Theory of open quantum systems , 2002 .
[29] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[30] Ian R. Petersen,et al. Minimax LQG Control of Stochastic Partially Observed Uncertain Systems , 2001, SIAM J. Control. Optim..
[31] Igor G. Vladimirov,et al. Anisotropic Norm Bounded Real Lemma for Linear Discrete Time Varying Systems , 2012, ArXiv.
[32] Michele Pavon,et al. Schr ¨ odinger bridges for discrete-time, classical and quantum Markovian evolutions , 2010 .
[33] A. P. Kurdjukov,et al. Stochastic approach to H/sub /spl infin//-optimization , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[34] W. Rudin. Real and complex analysis , 1968 .
[35] Karolos M. Grigoriadis,et al. A unified algebraic approach to linear control design , 1998 .
[36] I. Petersen,et al. Robust Control Design Using H-? Methods , 2012 .
[37] Charalambos D. Charalambous,et al. Stochastic Uncertain Systems Subject to Relative Entropy Constraints: Induced Norms and Monotonicity Properties of Minimax Games , 2007, IEEE Transactions on Automatic Control.
[38] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[39] A. Blaquière,et al. Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version) , 1992 .
[40] Ian R. Petersen,et al. Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models with conditional relative entropy constraints , 2004, CDC.
[41] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[42] Michele Pavon,et al. On the Geometry of Maximum Entropy Problems , 2011, SIAM Rev..
[43] Jan C. Willems,et al. Dissipative Dynamical Systems , 2007, Eur. J. Control.
[44] D. Naidu,et al. Optimal Control Systems , 2018 .
[45] Ian R. Petersen,et al. Minimum relative entropy state transitions in discrete time systems with statistically uncertain noise , 2010, 49th IEEE Conference on Decision and Control (CDC).
[46] K. Glover,et al. State-space approach to discrete-time H∞ control , 1991 .
[47] J. Willems. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .
[48] Paolo Dai Pra,et al. A stochastic control approach to reciprocal diffusion processes , 1991 .
[49] Alessandro Beghi,et al. Continuous-time Gauss-Markov processes with fixed reciprocal dynamics , 1997 .
[50] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[51] Ian R. Petersen,et al. Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 2000, IEEE Trans. Autom. Control..
[52] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[53] Ian R. Petersen,et al. Robust Control Design Using H-infinity Methods , 2000 .
[54] N. Higham. Functions Of Matrices , 2008 .